(a) In ΔABC, given that ∠ A = 38°, ∠ C = 85°, and c = 32 cm.
(b) In ΔABC, given that ∠ A = 24°, b = 12.5 m, and c = 13.2 m.
(a) angle(A) = 38o and angle(C) = 85o ---> angle(B) = 180o - angle(A) - angle(B) = 180o - 38o - 85o = 57o
Since you know side(c) = 32 cm, you can use the Law of Sines to find sides a and b:
side(a) / sin( angle(A) ) = side(c) / sin( angle(C) )
side(a) / sin( 38o ) = 32 / sin( 85o )
side(a) = 19.77 cm
side(b) / sin( angle(B) ) = side(c) / sin( angle(C) )
side(b) / sin( 57o ) = 32 / sin( 85o )
side(a) = 26.94 cm
(b) angle(A) = 24o and side(b) = 12.5 m side(c) = 13.2 m
This describes a S-A-S situation, so you can use the Law of Cosines:
a2 = b2 + c2 - 2·b·c·cos(A)
a2 = (12.5)2 + (13.2)2 - 2·(12.5)·(13.2)·cos(24)
a = 5.39 m
You can use the Law of Sines to find angle(B)
[Warning: Don't use the Law of Sines to find the largest angle in a triangle unless you have to!]
sin(B) / side(b) = sin(A) / side(a)
sin(B) / 12.5 = sin(24o) / 5.39
angle(B) = 70.6o
By subtracting angle(C) = 180o - angle(A) - angle(B) = 180o - 24o - 70.6o = 85.4o