+0

Trouble..

0
433
3
+62

$$f(x)=arctan(8x); f'(x)=?$$

$$f(x)=sin(x)^{cos(x)}; f'(x)=?$$

YehChi  Jan 13, 2015

#2
+20680
+10

I. $$f(x)=arctan(8x);f'(x)=?$$

$$\tan[\ {\tan^{-1}(8x)} \ ] = 8x \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\(1+\tan^2(\ {\tan^{-1}(8x)} \ ) )\times\left[\ {\tan^{-1}(8x)} \ \right]' = 8 \\\\\left[ 1+(8x)^2} \right]\times\left[{\tan^{-1}(8x)} \ \right]' = 8 \\\\\boxed{ \left[\ {\tan^{-1}(8x)} \ \right]' = \frac{8} {1+(8x)^2} } }$$

II. $$f(x)=sin(x)^{cos(x)};f'(x)=?$$

$$y=\sin{(x)}^{ \cos{(x)} } \quad | \quad \ln() \\ \\ \ln{(y)} = \cos{(x)} *\ln{ (\sin{(x)} ) } \quad | \quad \frac{\ d()}{dx} \\ \\ \frac{y'}{y} = [\cos{(x)}]' * \ln{ (\sin{(x)} ) } + \cos{(x)} *[ \ln{ (\sin{(x)} ) } ]' \\\\ y' = y \left( [\cos{(x)}]' * \ln{ (\sin{(x)} ) } + \cos{(x)} *[ \ln{ (\sin{(x)} ) } ]' \right) \\ \\ y' = \sin{(x)}^{ \cos{(x)} } \left( -\sin{(x)} * \ln{ (\sin{(x)} ) } + \cos{(x)} * \frac{ \cos{(x)} } {\sin{(x)} } \right) \\ \\ y' = \sin{(x)}^{ \cos{(x)} } \left( -\sin{(x)} * \ln{ (\sin{(x)} ) } + \frac{ \cos^2{(x)} } {\sin{(x)} } \right) \\ \\$$

heureka  Jan 13, 2015
#1
+94114
+5

You are probably encouraged to do this via formula but I can never remember the formula so I will show you the long way.

Besides I never do anything the short way - ask anyone       LOL

$$\\y=atan(8x)\\\\ 8x=tany\\\\ x=\frac{tany}{8}\\\\ \frac{dx}{dy}=\frac{sec^2y}{8}\\\\ \frac{dx}{dy}=\frac{1}{8cos^2y}\\\\ \frac{dy}{dx}=8cos^2y\\\\$$

At this point I used this triangle

$$\\\frac{dy}{dx}=8[cosy]^2\\\\ \frac{dy}{dx}=8[\frac{1}{\sqrt{1+64x^2}}]^2\\\\ \frac{dy}{dx}=\frac{8}{1+64x^2}\\\\$$

Melody  Jan 13, 2015
#2
+20680
+10

I. $$f(x)=arctan(8x);f'(x)=?$$

$$\tan[\ {\tan^{-1}(8x)} \ ] = 8x \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\(1+\tan^2(\ {\tan^{-1}(8x)} \ ) )\times\left[\ {\tan^{-1}(8x)} \ \right]' = 8 \\\\\left[ 1+(8x)^2} \right]\times\left[{\tan^{-1}(8x)} \ \right]' = 8 \\\\\boxed{ \left[\ {\tan^{-1}(8x)} \ \right]' = \frac{8} {1+(8x)^2} } }$$

II. $$f(x)=sin(x)^{cos(x)};f'(x)=?$$

$$y=\sin{(x)}^{ \cos{(x)} } \quad | \quad \ln() \\ \\ \ln{(y)} = \cos{(x)} *\ln{ (\sin{(x)} ) } \quad | \quad \frac{\ d()}{dx} \\ \\ \frac{y'}{y} = [\cos{(x)}]' * \ln{ (\sin{(x)} ) } + \cos{(x)} *[ \ln{ (\sin{(x)} ) } ]' \\\\ y' = y \left( [\cos{(x)}]' * \ln{ (\sin{(x)} ) } + \cos{(x)} *[ \ln{ (\sin{(x)} ) } ]' \right) \\ \\ y' = \sin{(x)}^{ \cos{(x)} } \left( -\sin{(x)} * \ln{ (\sin{(x)} ) } + \cos{(x)} * \frac{ \cos{(x)} } {\sin{(x)} } \right) \\ \\ y' = \sin{(x)}^{ \cos{(x)} } \left( -\sin{(x)} * \ln{ (\sin{(x)} ) } + \frac{ \cos^2{(x)} } {\sin{(x)} } \right) \\ \\$$

heureka  Jan 13, 2015
#3
+94114
0

Thanks Heureka,  I didn't know where to start with that second one.

I think you have done the first one different from me too - I shall have to take a look :)

Melody  Jan 13, 2015