We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
349
2
avatar

\({x - 5 \over (x - 2)(x + 10)}\)+\({2x + 1 \over (x - 2)(x + 2)}\)

 

I added it using LCD: \({(x - 2)(x + 10)(x + 2)}\)

 

Here's what I did:

 

\({(x - 5)(x + 2) + (x + 10)(2x + 1) \over (x - 2)(x + 10)(x + 2)}\)

\({(x^2 - 3x + 10) + (x^2 + 21x + 10) \over (x - 2)(x + 10)(x + 2)}\)

\({2x^2 + 18x + 20 \over (x - 2)(x + 10)(x + 2)}\) (I tried to factor the numerator, and I don't think it's factorable...?)

 

The textbook got \({3x(x + 6) \over (x - 2)(x + 10)(x + 2)}\), but how??

 Apr 3, 2018
 #1
avatar+349 
+3

This is what I did:

 

1. Factor out \({1\over x-2}\)\({1\over x-2}({x-5\over x+10}+{2x+1\over x+2})\)

2. Apply the cross-horizontal method: \({1\over x-2}({(x+2)(x+5)+(x+10)(2x+1)\over(x+10)(x+2)})\)

3. Simplify the numerator: \({1\over x-2}({3x^2+18x\over(x+10)(x+2)})\)

4. Factor out 3x from the numerator: \({1\over x-2}({3x(x+6)\over(x+10)(x+2)})\)

5. Multiply: \({3x(x+6)\over(x-2)(x+10)(x+2)}\)

 

Your error is in the second line wherein you applied FOIL. \(-5*2=-10\). You forgot to consider the signs smiley

 Apr 3, 2018
edited by Mathhemathh  Apr 3, 2018
 #2
avatar+8724 
+3

You made an error in multiplying   (x - 5)(x + 2)   and   (x + 10)(2x + 1) .

 

(x - 5)(x + 2)   =   (x)(x) + (x)(2) + (-5)(x) + (-5)(2)   =   x2 - 3x - 10

 

and

 

(x + 10)(2x + 1)   =   (x)(2x) + (x)(1) + (10)(2x) + (10)(1)   =   2x2 + 21x + 10

 

Otherwise your method is correct.  smiley

 

\(\qquad\ \frac{(x-5)(x+2)+(x+10)(2x-1)}{(x-2)(x+10)(x+2)} \\ =\\ \qquad\frac{(x^2-3x-10)+(2x^2+21x+10)}{(x-2)(x+10)(x+2)} \\ =\\ \qquad\frac{3x^2+18x}{(x-2)(x+10)(x+2)} \\ =\\ \qquad\frac{3x(x+6)}{(x-2)(x+10)(x+2)}\)

.
 Apr 3, 2018

19 Online Users

avatar
avatar