Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
867
4
avatar+34 

 

I have had tons of trouble with this. I would appreciate the help! :)

 May 30, 2016
 #1
avatar
+5

Here are two "Repetends" of 1/97=

 

1/97=0.0103092783 5051546391 7525773195 8762886597 9381443298 9690721649 4845360824 7422680412 3711340206 185567.......starts repeating here. 0103 0927835051 5463917525 7731958762 8865979381 4432989690 7216494845 3608247422 6804123711 3402061855 67.....etc.

 

I don't know if they expect you to " calculate" manually, or some other way.

 May 30, 2016
 #2
avatar+34 
0

I appreciate the help. I think I will try to build on what you said. In the meantime, I still would appreciate other help!

krayracker  May 30, 2016
 #3
avatar
0

Suppose that k = the 96 digit repetend, (as a whole number), then

1/97 = k.10^(-96) + k.10^(192) + k.10^(-288) + ...

        = k.10^(-96)(1 + 10^(-96) + 10^(-192) + ...)

        = k.10(-96).1/(1 - 10^(-96)),     (summing the GP),

        = k/(10^96 - 1)

        = k/ 9999....99999,

so

97k = 9999...99999 .

Carry out the long multiplication on the lhs, (matching up with the 9's on the rhs).

The last digit of k is given as a 7, so 97* 7 = 679 which gives us a 9 in the final column and a carry of 67.

The next to last digit of k is a 6 so 97*6 + 'the carry' = 582 + 67 = 649, which gives us the next 9 with a carry of 64.

The third digit from the end of k, denoted by A in the question, has the requirement that the result of 97*A + 64 should end with a 9. That means that 97*A has to end which a 5 which in turn means that A = 5.

- Bertie

 May 31, 2016
 #4
avatar+26397 
0

 

1:97=0. remainder 1110:97=0 remainder 101010:97=1 remainder 3310:97=0 remainder 303010:97=3 remainder 9910:97=0 remainder 909010:97=9 remainder 272710:97=2 remainder 76z10:97=A remainder yy10:97=6 remainder xx10:97=7 remainder 1 end of repeating part remainder =1

 

We solve A:

We have:

x10:97=7 remainder 1 or x10=797+1x=797+110x=68010x=68

 

...and we have:

y10:97=6 remainder x or y10=697+68y=697+6810y=65010y=65

 

...and...

z10:97=A remainder y or z10=A97+65

 

We have to solve the Diophantine equation  10z97A=65.

We can do it with a variation of the Euclidean algorithm, or we can do it with Euler's Method etc.


I will do it with Euler's theorem:

In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem)states that if m and a are coprime positive integers, then aφ(m)1(modm), if  gcd(a,m)=1oraφ(m)(modm)1|1aaφ(m)a(modm)1a=a1aφ(m)1(modm)1a=a1a1=1aaφ(m)1(modm), if  gcd(a,m)=1

 

We need this Formula: a1=1aaφ(m)1(modm), if  gcd(a,m)=1

 

an we need the Euler's Totient Function: φ(10)=10(112)(115)=4, because  10=25

 

so we have:

10z97A=6597A=10z65|(mod10)97A65(mod10)97A65+710(mod10)97A5(mod10)97A197597(mod10)A5197(mod10)197(mod10)97φ(10)1(mod10) see Formula above,we can do it because,  gcd(97,10)=19741(mod10)973(mod10)912673(mod10)3(mod10)A5197(mod10)A53(mod10)A15(mod10)A5(mod10)A=5

 


laugh

 Jun 1, 2016

3 Online Users

avatar