We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
227
2
avatar

Two identical circles touch at the point P(9,3) 

one of the circles has equation x^2 + y^2 - 10x - 4y +12 = 0

find the equation of the other circle 

 Oct 27, 2018

Best Answer 

 #1
avatar+18862 
+3

Lets figure out the standard equation for a circle by completing the square

x^2-10x+25    + y^2-4x+4  = -12 +25 + 4

9x-5)^2  + (y-2)^2 = 17                                     center is h, k  = 5,2    

 

We want a straight line frome center through 9,3  to new center (so the circles will be tangent at 9,3)

 

5,2   to  9, 3    is  a change of  4,1      add that to 9, 3   to get    13,4

 

SO the identical tangent circle is

 

(x-13)^2 + (y-4)^2 = 17

 Oct 27, 2018
 #1
avatar+18862 
+3
Best Answer

Lets figure out the standard equation for a circle by completing the square

x^2-10x+25    + y^2-4x+4  = -12 +25 + 4

9x-5)^2  + (y-2)^2 = 17                                     center is h, k  = 5,2    

 

We want a straight line frome center through 9,3  to new center (so the circles will be tangent at 9,3)

 

5,2   to  9, 3    is  a change of  4,1      add that to 9, 3   to get    13,4

 

SO the identical tangent circle is

 

(x-13)^2 + (y-4)^2 = 17

ElectricPavlov Oct 27, 2018
 #2
avatar+18862 
+3

Here is a graph:

 

 Oct 27, 2018

14 Online Users

avatar