+0  
 
0
136
2
avatar

Two identical circles touch at the point P(9,3) 

one of the circles has equation x^2 + y^2 - 10x - 4y +12 = 0

find the equation of the other circle 

 Oct 27, 2018

Best Answer 

 #1
avatar+17209 
+3

Lets figure out the standard equation for a circle by completing the square

x^2-10x+25    + y^2-4x+4  = -12 +25 + 4

9x-5)^2  + (y-2)^2 = 17                                     center is h, k  = 5,2    

 

We want a straight line frome center through 9,3  to new center (so the circles will be tangent at 9,3)

 

5,2   to  9, 3    is  a change of  4,1      add that to 9, 3   to get    13,4

 

SO the identical tangent circle is

 

(x-13)^2 + (y-4)^2 = 17

 Oct 27, 2018
 #1
avatar+17209 
+3
Best Answer

Lets figure out the standard equation for a circle by completing the square

x^2-10x+25    + y^2-4x+4  = -12 +25 + 4

9x-5)^2  + (y-2)^2 = 17                                     center is h, k  = 5,2    

 

We want a straight line frome center through 9,3  to new center (so the circles will be tangent at 9,3)

 

5,2   to  9, 3    is  a change of  4,1      add that to 9, 3   to get    13,4

 

SO the identical tangent circle is

 

(x-13)^2 + (y-4)^2 = 17

ElectricPavlov Oct 27, 2018
 #2
avatar+17209 
+3

Here is a graph:

 

 Oct 27, 2018

7 Online Users

avatar
avatar