+0  
 
0
36
2
avatar

Two identical circles touch at the point P(9,3) 

one of the circles has equation x^2 + y^2 - 10x - 4y +12 = 0

find the equation of the other circle 

Guest Oct 27, 2018

Best Answer 

 #1
avatar+13578 
+3

Lets figure out the standard equation for a circle by completing the square

x^2-10x+25    + y^2-4x+4  = -12 +25 + 4

9x-5)^2  + (y-2)^2 = 17                                     center is h, k  = 5,2    

 

We want a straight line frome center through 9,3  to new center (so the circles will be tangent at 9,3)

 

5,2   to  9, 3    is  a change of  4,1      add that to 9, 3   to get    13,4

 

SO the identical tangent circle is

 

(x-13)^2 + (y-4)^2 = 17

ElectricPavlov  Oct 27, 2018
 #1
avatar+13578 
+3
Best Answer

Lets figure out the standard equation for a circle by completing the square

x^2-10x+25    + y^2-4x+4  = -12 +25 + 4

9x-5)^2  + (y-2)^2 = 17                                     center is h, k  = 5,2    

 

We want a straight line frome center through 9,3  to new center (so the circles will be tangent at 9,3)

 

5,2   to  9, 3    is  a change of  4,1      add that to 9, 3   to get    13,4

 

SO the identical tangent circle is

 

(x-13)^2 + (y-4)^2 = 17

ElectricPavlov  Oct 27, 2018
 #2
avatar+13578 
+3

Here is a graph:

 

ElectricPavlov  Oct 27, 2018

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.