+0  
 
0
50
1
avatar

1.

The explicit rule for a sequence is given. 

an=1/2(4/3)^n−1

What is the recursive rule for the geometric sequence.

a1= _____   an=  ______

 

 

& 2.

Enter the explicit rule for the geometric sequence.

15,3,3/5,3/25,…

an= 

 

Once again, thanks for your help!

Guest Apr 5, 2018
Sort: 

1+0 Answers

 #1
avatar+333 
0

1. a1 \(-{1\over3}\) by substituting 1 into the explicit rule.

   To find the recursive rule for the sequence, note that  \(a_{n-1}={1\over2}({4\over3})^{n-1}-1\).  Therefore:

 

\({4\over3}a_{n-1}={1\over2}({4\over3})^n-{4\over3}\)

\({4\over3}a_{n-1}+{1\over3}={1\over2}({4\over3})^n-1\)

\({4\over3}a_{n-1}+{1\over3}=a_n\)

 

   To check: \(a_1=-{1\over3}\)\(a_2={1\over2}({4\over3})^2-1={4\over3}a_1+{1\over3}=-{1\over9}\)

 

2. Since the sequence starts at 15 and the common ratio is \(1\over3\), the explicit rule is \(15\over5^{n-1}\).

Mathhemathh  Apr 5, 2018

15 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details