+0  
 
0
561
2
avatar+30 

1. The table of values represents a reciprocal function ​f(x).

 

How much greater is the average rate of change over the interval [−6, −4][−6, −4] than the interval [−3, −1][−3, −1] ?

 

x                     f(x)

−6                  −0.0046

−5                  −0.0079

−4                  −0.0154

−3                  −0.0357

−2                  −0.1111

−1                  −0.5

 

2. Consider two functions: g(x)=20(1.5)x and the function ​f(x)​ shown in the table.

 

Which statements are true?

Select each correct answer.

 

x              f(x)

−5           −45

−4           −48

−3           −49

−2           −48

−1           −45

0             −40

1             −33

 

a) ​g(x)​ has a greater y-intercept than ​f(x)​ does.

b) ​f(x)​ increases at a faster rate than ​g(x)​ does on the interval (−5, −3) .

c)​ f(1) is less than g(−1) .

d) f(x) and ​g(x)​ are both increasing on the interval  (−∞, ∞) .

GuestMember  Feb 5, 2018
 #1
avatar+7339 
+3

1.    Here's a graph of the points to get an idea of what the function looks like.

 

average rate of change   =   \(\frac{\text{change in }f(x)}{\text{change in }x}\)

 

 

average rate of change over the interval  [-6, -4]   =   \( \frac{ f(-6) \,-\, f(-4)}{ (-6) \,-\,( -4) }\)

 

\( \frac{ f(-6) \,-\, f(-4)}{ (-6) \,-\,( -4) }\,=\,\frac{ (-0.0046) \,-\, (-0.0154) }{ (-6) \,-\, (-4) }\,=\,\frac{ 0.0108 }{-2 }\,=\,- 0.0054\)

 

average rate of change over the interval  [-6, -4]   =   - 0.0054

 

Notice that this is just the slope of the line through the points  ( -6, f(-6) )  and  ( -4, f(-4) ) .

 

 

average rate of change over the interval  [-3, -1]   =   \( \frac{ f(-3) \,-\, f(-1)}{ (-3) \,-\,( -1) }\)

 

\( \frac{ f(-3) \,-\, f(-1)}{ (-3) \,-\,( -1) }\,=\, \frac{ (-0.0357) \,-\, (-0.5)}{ (-3) \,-\,( -1) }\,=\, \frac{0.4643}{ -2 }\,=\,- 0.23215\)

 

average rate of change over the interval  [-3, -1]   =   - 0.23215

 

 

How much greater is  - 0.0054  than  - 0.23215  ?

 

(-0.0054)  -  (-0.23215)   =   0.22675

hectictar  Feb 5, 2018
 #2
avatar+7339 
+2

2.     Assuming that     g(x)   =   20(1.5)x

 

the y-intercept of g(x)  =   g(0)   =   20(1.5)0   =   20(1)   =   20

the y-intercept of f(x)  =  f(0)   =   -40

 

The y-intercept of  g(x)  is greater than the y-intercept of f(x) , so  a)  is true.

 

From  -5  to  -3 ,  f(x)  goes from  -45  to  -49 ,  and   (-49) - (-45)   =   -4

From  -5  to  -3 ,  g(x)  goes from  \(\frac{640}{243}\)  to  \(\frac{160}{27}\) , and  \(\frac{160}{27}\)  -  \(\frac{640}{243}\)   =   \(\frac{800}{243}\)

 

f(x)  is decreasing on the interval  (-5, -3)  because as  x  gets larger, f(x) gets smaller.

\(\frac{800}{243}\)  >  -4 ,  so  g(x)  is increasing faster than  f(x)  on the interval  (-5, -3) .  b)  is false.

 

f(1)   =   -33

g(-1)   =   20(1.5)-1   =   \(\frac{20}{1.5}\)   =   \(\frac{40}{3}\)   ≈   13.3

 

Is  f(1)  less than  g(-1) ?   Is  -33  less than  13.3 ?  Yes, so  c)  is true.

 

We already found that  f(x)  is decreasing on the interval  (-5, -3)  , so

f(x)  can't be increasing on the interval  (−∞, ∞) .  d)  is false.

hectictar  Feb 6, 2018

10 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.