Compute 1 - 2 + 3 - 4 + ... + 2005 - 2006 + 2007.
and
Compute the sum
2/(1*2*3) + 2/(2*3*4) + 2/(3*4*5)
We didn't learn these in class... thanks for all the help today!
First one
[1 - 2] + [ 3 - 4] + ... + [2005 - 2006] + 2007
Note that each pair of terms in the brackets sum to -1
And we have 2006/2 = 1003 of these pairs....so the series sums to :
1003 (-1) + 2007 = 1004
Second one.....
2/(1*2*3) + 2/(2*3*4) + 2/(3*4*5) =
2/6 + 2/24 + 2/60 =
1/3 + 1/12 + 1/30 =
20/60 + 5/60 + 2/60 =
27 / 60
Thanks! I now realize I forgot to add this to the second problem. Suppose that the second sequence was infinitely repeating (+ … ), what would be the sum then?
Sorry, ACG...I know that the infinite sum of the second series is 1/2, but I don't know how to prove it......heureka may know how to prove this.....I'll send him a message....
∑2/[n(n+1)(n+2)] from n=1 to infinity, then it converges to 1/2.
Sorry, same here, except that the Partial Sum Formula would be: (n^2 + 3n)/(2 (n + 1) (n + 2)). So, if n=1,000,000, then:[1,003,000/2,006,004] =0.49999900.............etc.
Compute the sum 2/(1*2*3) + 2/(2*3*4) + 2/(3*4*5)+...
see link: http://web2.0calc.com/questions/algebra_47009
In General:
\(\begin{array}{lcll} s = \dfrac{1}{1 \cdot 2 } + \dfrac{1}{2 \cdot 3} + \dfrac{1}{3 \cdot 4 } + \dfrac{1}{4 \cdot 5 } + \cdots \ + \dfrac{1}{n \cdot (n+1)} + \cdots =\ \frac{1}{1!0!}\cdot \frac{1}{1} = 1 \\\\ s =\mathbf{ \dfrac{1}{1 \cdot 2 \cdot 3} + \dfrac{1}{2 \cdot 3 \cdot 4} + \dfrac{1}{3 \cdot 4 \cdot 5} + \dfrac{1}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{1}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \frac{1}{2!0!}\cdot \frac{1}{2} } = \frac{1}{4} \\\\ s = \dfrac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dfrac{1}{2 \cdot 3 \cdot 4 \cdot 5} + \dfrac{1}{3 \cdot 4 \cdot 5 \cdot 6} + \dfrac{1}{4 \cdot 5 \cdot 6 \cdot 7} + \cdots \ + \dfrac{1}{n \cdot (n+1) \cdot (n+2) \cdot (n+3)} + \cdots =\ \frac{1}{3!0!}\cdot \frac{1}{3} = \frac{1}{18} \\\\ s = \dfrac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} + \dfrac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \dfrac{1}{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} + \dfrac{1}{4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} + \cdots \ + \dfrac{1}{n \cdot (n+1) \cdot (n+2) \cdot (n+3 \cdot (n+4) } + \cdots =\ \frac{1}{4!0!}\cdot \frac{1}{4} = \frac{1}{96} \\\\ \ldots \\ s = \dfrac{1}{1 \cdot 2 \cdot 3 \cdots } + \dfrac{1}{2 \cdot 3 \cdot 4 \cdots } + \dfrac{1}{3 \cdot 4 \cdot 5 \cdots} + \cdots \ + \dfrac{1}{n \cdot (n+1) \cdot (n+2)\cdot~\cdots ~\cdot (n+m) } + \cdots =\ \frac{1}{m!0!}\cdot \frac{1}{m} = \frac{1}{m\cdot m!} = \frac{1}{(m+1)!-m!} \\\\ \end{array} \\ \)