+0  
 
+1
42
1
avatar

Find the units digit of $(123^{33}  + 27^{54}) \times (148^{326} + 2019^{2016})$.

 Apr 6, 2021
 #1
avatar+460 
+1

It's equal to $(3^{33}+7^{54})(8^{326}+(-1)^{2016})\pmod{10}$.

 

$3,7,8$ all cycle modulo $10$ and $(-1)^{2016}$ is trivial to deal with.

 Apr 6, 2021

29 Online Users

avatar
avatar