We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
45
4
avatar

[Urgent] Distance, rate problem 

if a car travels from location a to b at 100km/h the driver will arrive 15 minutes late. if the car travels 120 km/h the driver will arrive 40 minutes early. what is the distance between location a and b?

 Jul 23, 2019
 #1
avatar+102399 
+3

Remember that Rate * Time = Distance

Let the normal driving time  be, T  (in hours)

Let 15 min  = (1/4)hr

Let 40 min  = (2/3)hr

 

So....equating distance betwen a and b, we have that

 

100 * ( T + 1/4)   =   120 * ( T - 2/3)      simpify

 

100T + 25  =  120T  - 80       add 80 to both sides , subtract 100T from both sides

 

105  =  20T         divide both sides by 20

 

105 / 20  = T   =  5.25 hrs

 

So....the total distance between a and b is  

 

100 * ( 5.25 + 1/4)   =   100 (5.25 + .25 )  = 100 (5.50)  =  550 km

 

 

cool cool cool

 Jul 23, 2019
edited by CPhill  Jul 23, 2019
 #2
avatar+142 
+3

Let \(d\) be the distance to location b in km. Since you drove \(100\) km/h, then the time that it took you to get there is \(\frac{d}{100}\). If you drove \(120\) km/h then the time would be \(\frac{d}{120}\). Since you drove arrived \(55 \) minutes later, and \(\frac{55}{60}\), or \(\frac{11}{12}\). Therefore we can create the equation, \(\frac{d}{120}=\frac{d}{100}-\frac{11}{12}\). Multiplying both sides by \(600\). The LCM. We get \(5d=6d-550\). Subtract \(6d\) from both sides. \(-d=-550\). Divide by \(-1\)\(d=550\). The distance between location \(a\) and location \(b\) is \(550\) km.

 

 

-\(\pi\) KeyLimePi

 Jul 23, 2019
 #3
avatar+142 
+3

Annnnnd CPhill beat me to it

 Jul 23, 2019
 #4
avatar+102399 
+2

No big deal, KLP.....we both got the correct answer.....I gave you a point, too !!!

 

 

cool cool cool

CPhill  Jul 23, 2019

12 Online Users