How many digits are in the value of the following expression: \(2^{2001}\times 5^{1950}\div 4^{27}\)?
2^2001 * 5^1950
______________ =
4^27
_____________ =
(2^2)^27
2^54
2^1947 * 5^1950 =
2^ 1947 * 5^1947 * 5^3 =
(2*5)^1947 * 5^3 =
10^1947 * 125 =
125 x 10^1947 =
1.25 x 10^1949
So...... 1950 digits
Thank you so much, CPhill! Wow, amazing! I understand it much better now!