We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
372
2
avatar+814 

How many digits are in the value of the following expression: \(2^{2001}\times 5^{1950}\div 4^{27}\)?

 Mar 12, 2018
 #1
avatar+104793 
+1

2^2001 * 5^1950

______________  =

     4^27

 

2^2001 * 5^1950

_____________    =

        (2^2)^27

 

2^2001 * 5^1950

_____________    =

       2^54

 

2^1947 * 5^1950 =

 

2^ 1947 * 5^1947 * 5^3  =

 

(2*5)^1947  * 5^3  =

 

10^1947 * 125  =

 

125 x 10^1947 =

 

1.25 x 10^1949

 

So...... 1950 digits

 

 

cool cool cool

 Mar 12, 2018
 #2
avatar+814 
+1

Thank you so much, CPhill! Wow, amazing! I understand it much better now!

mathtoo  Mar 12, 2018

17 Online Users