+0  
 
+3
568
2
avatar+1314 

Urgent* Two particals, find the velocity for each.
Note: the v1 and v2 are velocities.

17= v1sin(30)+v2sin(-45)  Along the x axis.

 

Substituting in the y axis equation where v2 = v1cos(30)/cos(45)

v2sin(30) -v1cos(30)/cos(45) *cos45 = 17


Solve please.

Stu  Jul 18, 2014

Best Answer 

 #7
avatar+26973 
+10

I think you might be trying to solve the following equations (from a previous problem):

17 = v1*cos(45) + v2*cos(30)  ...(1)

0 = -v1*sin(45) + v2*sin(30)     ...(2)

Add v1*sin(45) to both sides of (2) and then divide both sides by sin(45)

v1 = v2*sin(30)/sin(45)             ...(3)

Replace v1 in (1) by (3)

17 =  v2*sin(30)/sin(45)*cos(45) + v2*cos(30)

Factor the right-hand side

17 =  v2*[sin(30)/sin(45)*cos(45) + cos(30)]

Divide both sides by [sin(30)/sin(45)*cos(45) + cos(30)] to get v2

v2 = 17/[sin(30)/sin(45)*cos(45) + cos(30)]   ...(4)

Replace v2 in (3) by (4) to get v1

v1 = 17/[sin(30)/sin(45)*cos(45) + cos(30)]*sin(30)/sin(45)   

$${\mathtt{v1}} = {\frac{{\frac{{\mathtt{17}}}{\left[{\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{30}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{45}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{30}}^\circ\right)}\right]}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{30}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}} \Rightarrow {\mathtt{v1}} = {\mathtt{8.799\: \!847\: \!533\: \!482\: \!900\: \!7}}$$

$${\mathtt{v2}} = {\frac{{\mathtt{17}}}{\left[{\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{30}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{45}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{30}}^\circ\right)}\right]}} \Rightarrow {\mathtt{v2}} = {\mathtt{12.444\: \!863\: \!728\: \!674\: \!910\: \!2}}$$

Alan  Jul 18, 2014
 #7
avatar+26973 
+10
Best Answer

I think you might be trying to solve the following equations (from a previous problem):

17 = v1*cos(45) + v2*cos(30)  ...(1)

0 = -v1*sin(45) + v2*sin(30)     ...(2)

Add v1*sin(45) to both sides of (2) and then divide both sides by sin(45)

v1 = v2*sin(30)/sin(45)             ...(3)

Replace v1 in (1) by (3)

17 =  v2*sin(30)/sin(45)*cos(45) + v2*cos(30)

Factor the right-hand side

17 =  v2*[sin(30)/sin(45)*cos(45) + cos(30)]

Divide both sides by [sin(30)/sin(45)*cos(45) + cos(30)] to get v2

v2 = 17/[sin(30)/sin(45)*cos(45) + cos(30)]   ...(4)

Replace v2 in (3) by (4) to get v1

v1 = 17/[sin(30)/sin(45)*cos(45) + cos(30)]*sin(30)/sin(45)   

$${\mathtt{v1}} = {\frac{{\frac{{\mathtt{17}}}{\left[{\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{30}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{45}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{30}}^\circ\right)}\right]}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{30}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}} \Rightarrow {\mathtt{v1}} = {\mathtt{8.799\: \!847\: \!533\: \!482\: \!900\: \!7}}$$

$${\mathtt{v2}} = {\frac{{\mathtt{17}}}{\left[{\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{30}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{45}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{30}}^\circ\right)}\right]}} \Rightarrow {\mathtt{v2}} = {\mathtt{12.444\: \!863\: \!728\: \!674\: \!910\: \!2}}$$

Alan  Jul 18, 2014
 #8
avatar+1314 
0

Thanks. Now I shouldnt get lost. 

Stu  Jul 21, 2014

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.