Processing math: 100%
 
+0  
 
0
57
1
avatar+8 

 Given sin(2x)=158 and tan(2x)>0,0x2π, find cos(x)

 Mar 3, 2024

Best Answer 

 #1
avatar+410 
+2

We know sin(2x)>0,tan(2x)<0, therefore x is in quadrant 3. So cos(2x)must be negative.

Therefore, cos2(2x)=1sin2(2x)=4964cos(2x)=78.

Becuase cos(2x) is in the third quadrant, then we know x must be in the second quadrant, so cos must be negative

Using our half-angle formula for cos:

cos(x)=182=14. Therefore cos(x) = -1/4

 Mar 4, 2024
 #1
avatar+410 
+2
Best Answer

We know sin(2x)>0,tan(2x)<0, therefore x is in quadrant 3. So cos(2x)must be negative.

Therefore, cos2(2x)=1sin2(2x)=4964cos(2x)=78.

Becuase cos(2x) is in the third quadrant, then we know x must be in the second quadrant, so cos must be negative

Using our half-angle formula for cos:

cos(x)=182=14. Therefore cos(x) = -1/4

hairyberry Mar 4, 2024

0 Online Users