+0  
 
0
281
1
avatar+4 

x + 4y -3z = -8

3x - y + 3z = 12

x + y + 6z = 1

x=? y=? z=?

jellie  Mar 24, 2015

Best Answer 

 #1
avatar+19479 
+10

Cramer's Rule

 

$$\begin{array}{rcrcrcr}
1\cdot x &+& 4 \cdot y &-&3 \cdot z &=& -8 \\
3\cdot x &-& 1 \cdot y &+& 3 \cdot z &=& 12 \\
1\cdot x &+& 1 \cdot y &+& 6 \cdot z &=& 1 \\
\end{array}$$

 

$$\small{\text{
$
x=
\frac
{\left|\begin{array}{rrr}
-8 & 4 & -3 \\
12 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
{\left|\begin{array}{rrr}
1 & 4 & -3 \\
3 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
$
}} \quad
\small{\text{
$
y=
\frac
{\left|\begin{array}{rrr}
1 & -8 & -3 \\
3 & 12 & 3 \\
1 & 1 & 6
\end{array}\right|}
{\left|\begin{array}{rrr}
1 & 4 & -3 \\
3 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
$
}} \quad
\small{\text{
$
z=
\frac
{\left|\begin{array}{rrr}
1 & 4 & -8 \\
3 & -1 & 12 \\
1 & 1 & 1
\end{array}\right|}
{\left|\begin{array}{rrr}
1 & 4 & -3 \\
3 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
$
}}$$

$$\small{\text{
$
x=
\frac
{
(-8)\cdot(-1)\cdot6+1\cdot4\cdot3+12\cdot 1\cdot(-3)
-1\cdot(-1)\cdot(-3)-(-8)\cdot 1\cdot 3 - 12\cdot 4\cdot 6
}
{
1\cdot(-1)\cdot 6 + 1\cdot 4 \cdot 3 + 3\cdot 1 \cdot (-3)
-1\cdot(-1)\cdot(-3) - 1\cdot 1 \cdot 3- 3\cdot 4 \cdot 6
}
=\frac
{48+12-36-3+24-288}
{-6+12-9-3-3-72}
=\frac
{-243}
{-81}
=3
$
}}$$

$$\small{\text{
$
y=
\frac
{
1\cdot 12 \cdot 6 + 1\cdot(-8)\cdot3 + 3\cdot 1 \cdot (-3)
-1\cdot 12 \cdot (-3) - 1\cdot 1 \cdot 3 - 3 \cdot (-8) \cdot 6
}
{
-81
}
=\frac
{72-24-9+36-3+144}
{-81}
=\frac
{216}
{-81}
=-2\frac{2}{3}
$
}} \quad$$

$$\small{\text{
$
z=
\frac
{
1\cdot(-1)\cdot 1 +1\cdot 4 \cdot 12 + 3 \cdot 1 \cdot(-8)
-1\cdot(-1)\cdot (-8) -1\cdot 1 \cdot 12 - 3\cdot 4 \cdot 1
}
{
-81
}
=\frac
{-1+48-24-8-12 -12}
{-81}
=\frac
{-9}
{-81}
=\frac{1}{9}
$
}} \quad$$

heureka  Mar 24, 2015
 #1
avatar+19479 
+10
Best Answer

Cramer's Rule

 

$$\begin{array}{rcrcrcr}
1\cdot x &+& 4 \cdot y &-&3 \cdot z &=& -8 \\
3\cdot x &-& 1 \cdot y &+& 3 \cdot z &=& 12 \\
1\cdot x &+& 1 \cdot y &+& 6 \cdot z &=& 1 \\
\end{array}$$

 

$$\small{\text{
$
x=
\frac
{\left|\begin{array}{rrr}
-8 & 4 & -3 \\
12 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
{\left|\begin{array}{rrr}
1 & 4 & -3 \\
3 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
$
}} \quad
\small{\text{
$
y=
\frac
{\left|\begin{array}{rrr}
1 & -8 & -3 \\
3 & 12 & 3 \\
1 & 1 & 6
\end{array}\right|}
{\left|\begin{array}{rrr}
1 & 4 & -3 \\
3 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
$
}} \quad
\small{\text{
$
z=
\frac
{\left|\begin{array}{rrr}
1 & 4 & -8 \\
3 & -1 & 12 \\
1 & 1 & 1
\end{array}\right|}
{\left|\begin{array}{rrr}
1 & 4 & -3 \\
3 & -1 & 3 \\
1 & 1 & 6
\end{array}\right|}
$
}}$$

$$\small{\text{
$
x=
\frac
{
(-8)\cdot(-1)\cdot6+1\cdot4\cdot3+12\cdot 1\cdot(-3)
-1\cdot(-1)\cdot(-3)-(-8)\cdot 1\cdot 3 - 12\cdot 4\cdot 6
}
{
1\cdot(-1)\cdot 6 + 1\cdot 4 \cdot 3 + 3\cdot 1 \cdot (-3)
-1\cdot(-1)\cdot(-3) - 1\cdot 1 \cdot 3- 3\cdot 4 \cdot 6
}
=\frac
{48+12-36-3+24-288}
{-6+12-9-3-3-72}
=\frac
{-243}
{-81}
=3
$
}}$$

$$\small{\text{
$
y=
\frac
{
1\cdot 12 \cdot 6 + 1\cdot(-8)\cdot3 + 3\cdot 1 \cdot (-3)
-1\cdot 12 \cdot (-3) - 1\cdot 1 \cdot 3 - 3 \cdot (-8) \cdot 6
}
{
-81
}
=\frac
{72-24-9+36-3+144}
{-81}
=\frac
{216}
{-81}
=-2\frac{2}{3}
$
}} \quad$$

$$\small{\text{
$
z=
\frac
{
1\cdot(-1)\cdot 1 +1\cdot 4 \cdot 12 + 3 \cdot 1 \cdot(-8)
-1\cdot(-1)\cdot (-8) -1\cdot 1 \cdot 12 - 3\cdot 4 \cdot 1
}
{
-81
}
=\frac
{-1+48-24-8-12 -12}
{-81}
=\frac
{-9}
{-81}
=\frac{1}{9}
$
}} \quad$$

heureka  Mar 24, 2015

19 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.