We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
857
1
avatar

Use logarithms to solve the problem. How long will it take an investment of $2000 to triple if the investment earns interest at the rate of 3%/year compounded daily? (Round your answer to two decimal places.)

 Jan 14, 2015

Best Answer 

 #1
avatar+17774 
+5

Compound Interest Formula:     A  =  P(1 + r/n)^(n·t)

A = final amount = $6000.00         P = beginning amont = $2000.00         t = time (in years)

r = rate (as a decimal) = 0.03        n = number of compounding periods per year = 1

--->   6000  =  2000(1 + 0.03/1)^(n·1)

--->   6000  =  2000(1.03)n

--->   3  =  (1.03)

--->   log(3)  =  log(1.03)n             Now, since exponents come out as multipliers:

--->  log(3)  =  n·log(1.03)             Divide both sides by log(1.03):

--->  log(3) / log(1.03)  =  n          Use a calculator to make this division, and round your answer.

 Jan 14, 2015
 #1
avatar+17774 
+5
Best Answer

Compound Interest Formula:     A  =  P(1 + r/n)^(n·t)

A = final amount = $6000.00         P = beginning amont = $2000.00         t = time (in years)

r = rate (as a decimal) = 0.03        n = number of compounding periods per year = 1

--->   6000  =  2000(1 + 0.03/1)^(n·1)

--->   6000  =  2000(1.03)n

--->   3  =  (1.03)

--->   log(3)  =  log(1.03)n             Now, since exponents come out as multipliers:

--->  log(3)  =  n·log(1.03)             Divide both sides by log(1.03):

--->  log(3) / log(1.03)  =  n          Use a calculator to make this division, and round your answer.

geno3141 Jan 14, 2015

19 Online Users

avatar
avatar
avatar
avatar