+0  
 
0
1436
3
avatar+56 

Use trigonometric identities to show:

 

a) Sin(t) / (1+cos(t)) = csc(t)

 

 

b) (sec2(t)-1) / sec2(t) = sin2(t)

 

 

c) Write an equivalent form of 1 / (1+sin(x)) without using fractions.

 Aug 12, 2016

Best Answer 

 #2
avatar+23247 
+10

Part a is not an identity.

If you try to establish:  sin(t) / ( 1 + cos(t) )   =   csc(t)

--->     sin(x) / ( 1 + cos(t) )  ·  [ ( 1 - cos(t) ) / ( 1 - cos(t) )             

--->     [ sin(x) · ( 1 - cos(t) ) ] / [ ( 1 + cos(t) ) · ( 1 - cos(t) ) ]

--->     [ sin(x) · ( 1 - cos(t) ) ] / [ 1 - cos2(t) ]                       since  1 - cos2(t) =  sin2(t) --->

--->     [ sin(x) · ( 1 - cos(t) ) ] / [ sin2(t)  ]       

--->     ( 1 - cos(t) ) / sin(t)

--->     1 / sin(t) - cos(t) / sin(t)

--->     csc(t) - cot(t)                                        not just csc(t) 

 

Part b:      ( sec2(t) - 1 ) / sec2(t)  =  sin2(t)

--->     ( sec2(t) - 1 ) / sec2(t)

--->     sec2(t) / sec2(t)  -  1 / sec2(t)

--->     1 - cos2(t)

--->     sin2(t)

 

Part c:     Write 1 / [ 1 + sin(x) ]  without fractions:

--->     1 / [ 1 + sin(x) ]  ·  [ ( 1 - sin(t) ) / ( 1 - sin(t) ) ]

--->     [ 1 · ( 1 - sin(t) ) ] / [ ( 1 + sin(t) ) · ( 1 - sin(t) ) ]

--->     [ 1 - sin(t) ] / [ 1 - sin2(t) ]

--->     [ 1 - sin(t) ] / [ cos2(t) ]

--->     1 / cos2(t)  -  sin(t) / cos2(t)

--->     sec2(t)  -  sin(t) / cos(t) · 1 / cos(t)

--->     sec2(t)  - tan(t) ·sec(t)

 Aug 13, 2016
 #1
avatar+14941 
+10

Hello Calpal!

 

Use trigonometric identities to show:

a) Sin(t) / (1+cos(t)) = csc(t)

 

b) (sec2(t)-1) / sec2(t) = sin2(t)

 

c) Write an equivalent form of 1 / (1+sin(x)) without using fractions

 

First off a)

 

a)

sin(t) / (1+cos(t)) = csc(t)

sin(t) / (1+cos(t)) = 1 / sin(t)

sin²(t) = 1 + cos(t)

1- cos²(t) = 1 + cos(t)

cos²(t) = - cos(t)

 

 

t ∈ {± periodically π/2; π; 3π/2}

 

Greeting asinus :- ) laugh !

 Aug 13, 2016
 #2
avatar+23247 
+10
Best Answer

Part a is not an identity.

If you try to establish:  sin(t) / ( 1 + cos(t) )   =   csc(t)

--->     sin(x) / ( 1 + cos(t) )  ·  [ ( 1 - cos(t) ) / ( 1 - cos(t) )             

--->     [ sin(x) · ( 1 - cos(t) ) ] / [ ( 1 + cos(t) ) · ( 1 - cos(t) ) ]

--->     [ sin(x) · ( 1 - cos(t) ) ] / [ 1 - cos2(t) ]                       since  1 - cos2(t) =  sin2(t) --->

--->     [ sin(x) · ( 1 - cos(t) ) ] / [ sin2(t)  ]       

--->     ( 1 - cos(t) ) / sin(t)

--->     1 / sin(t) - cos(t) / sin(t)

--->     csc(t) - cot(t)                                        not just csc(t) 

 

Part b:      ( sec2(t) - 1 ) / sec2(t)  =  sin2(t)

--->     ( sec2(t) - 1 ) / sec2(t)

--->     sec2(t) / sec2(t)  -  1 / sec2(t)

--->     1 - cos2(t)

--->     sin2(t)

 

Part c:     Write 1 / [ 1 + sin(x) ]  without fractions:

--->     1 / [ 1 + sin(x) ]  ·  [ ( 1 - sin(t) ) / ( 1 - sin(t) ) ]

--->     [ 1 · ( 1 - sin(t) ) ] / [ ( 1 + sin(t) ) · ( 1 - sin(t) ) ]

--->     [ 1 - sin(t) ] / [ 1 - sin2(t) ]

--->     [ 1 - sin(t) ] / [ cos2(t) ]

--->     1 / cos2(t)  -  sin(t) / cos2(t)

--->     sec2(t)  -  sin(t) / cos(t) · 1 / cos(t)

--->     sec2(t)  - tan(t) ·sec(t)

geno3141 Aug 13, 2016
 #3
avatar+128732 
+5

c) Write an equivalent form of 1 / (1+sin(x)) without using fractions.

 

Multiply top/bottom by (1 - sin x) and we have

 

[1 - sinx] / [ 1 - sin^2x]  =

 

[1 - sin x ] / cos^2x =

 

1/cos^2x - sinx/ cos^2x =

 

sec^2x - tanx* secx =

 

secx [ secx - tan x]

 

 

 

cool cool cool

 Aug 13, 2016

2 Online Users

avatar
avatar