+0  
 
0
490
2
avatar

Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050, Find the sum of 1x+2+3x+4+5x+...+98+99x+100.

Can you please show how you got the answer as well, thank you.

Guest Jan 29, 2015

Best Answer 

 #2
avatar+18843 
+10

Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050,

Find the sum of  1x+2+3x+4+5x+...+98+99x+100.

Can you please show how you got the answer as well, thank you.

$$\small{\text{
$
1x+2+3x+4+5x+ \dots +98+99x+100 =
$
}}\\
\small{\text{
$
\underbrace{
[\ 1x+3x+5x+7x+ \dots + 97x+99x \ ]
}_{\text{Part}\ 1}
+
\underbrace{
[ 2+4+6+8+\dots +98+100\ ]
}_{\text{Part}\ 2}
$
}}$$

Part 1:

$$\small{\text{
$[\ 1x+3x+5x+7x+ \dots + 97x+99x \ ]
=
2x[\ \underbrace{ 1+2+3+4+\dots + 49+ 50}_{=(1+50)*\frac{50}{2}}\ ] -50x $
}}\\
\small{\text{
$=(1+50) *50x-50x = 2550x-50x = 2500x
$
}}$$

Part 2:

$$\small{\text{
$
[ 2+4+6+8+\dots +98+100\ ] = 2*[\ \underbrace{ 1+2+3+4+\dots + 49+ 50}_{=(1+50)*\frac{50}{2}}\ ]
$
}}\\
\small{\text{
$=(1+50) *50 = 2550
$
}}$$

Part 1 + Part 2 = 2550 + 2500x

heureka  Jan 29, 2015
Sort: 

2+0 Answers

 #1
avatar+81115 
+8

Let's work on the 'x" terms, first

Notice that

1x + 99x = 100x

And

3x + 97x = 100x

So, it appears that adding all the x terms pair-wise like this will produce 100x. And we have 25 of them...so 25 x 100x = 2500x

Likewise

2 + 100, 4 + 98, 6 + 96.... all produce 102......and we have 25 pairs of these. So 102 x 25 = 2550

So, the "series" sums to   2550 + 2500x

 

CPhill  Jan 29, 2015
 #2
avatar+18843 
+10
Best Answer

Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050,

Find the sum of  1x+2+3x+4+5x+...+98+99x+100.

Can you please show how you got the answer as well, thank you.

$$\small{\text{
$
1x+2+3x+4+5x+ \dots +98+99x+100 =
$
}}\\
\small{\text{
$
\underbrace{
[\ 1x+3x+5x+7x+ \dots + 97x+99x \ ]
}_{\text{Part}\ 1}
+
\underbrace{
[ 2+4+6+8+\dots +98+100\ ]
}_{\text{Part}\ 2}
$
}}$$

Part 1:

$$\small{\text{
$[\ 1x+3x+5x+7x+ \dots + 97x+99x \ ]
=
2x[\ \underbrace{ 1+2+3+4+\dots + 49+ 50}_{=(1+50)*\frac{50}{2}}\ ] -50x $
}}\\
\small{\text{
$=(1+50) *50x-50x = 2550x-50x = 2500x
$
}}$$

Part 2:

$$\small{\text{
$
[ 2+4+6+8+\dots +98+100\ ] = 2*[\ \underbrace{ 1+2+3+4+\dots + 49+ 50}_{=(1+50)*\frac{50}{2}}\ ]
$
}}\\
\small{\text{
$=(1+50) *50 = 2550
$
}}$$

Part 1 + Part 2 = 2550 + 2500x

heureka  Jan 29, 2015

21 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details