Processing math: 100%
 
+0  
 
0
2138
2
avatar

Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050, Find the sum of 1x+2+3x+4+5x+...+98+99x+100.

Can you please show how you got the answer as well, thank you.

 Jan 29, 2015

Best Answer 

 #2
avatar+26397 
+10

Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050,

Find the sum of  1x+2+3x+4+5x+...+98+99x+100.

Can you please show how you got the answer as well, thank you.

 1x+2+3x+4+5x++98+99x+100=  [ 1x+3x+5x+7x++97x+99x ]Part 1+[2+4+6+8++98+100 ]Part 2 

Part 1:

 [ 1x+3x+5x+7x++97x+99x ]=2x[ 1+2+3+4++49+50=(1+50)502 ]50x  =(1+50)50x50x=2550x50x=2500x 

Part 2:

 [2+4+6+8++98+100 ]=2[ 1+2+3+4++49+50=(1+50)502 ]  =(1+50)50=2550 

Part 1 + Part 2 = 2550 + 2500x

 Jan 29, 2015
 #1
avatar+130477 
+8

Let's work on the 'x" terms, first

Notice that

1x + 99x = 100x

And

3x + 97x = 100x

So, it appears that adding all the x terms pair-wise like this will produce 100x. And we have 25 of them...so 25 x 100x = 2500x

Likewise

2 + 100, 4 + 98, 6 + 96.... all produce 102......and we have 25 pairs of these. So 102 x 25 = 2550

So, the "series" sums to   2550 + 2500x

 

 Jan 29, 2015
 #2
avatar+26397 
+10
Best Answer

Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050,

Find the sum of  1x+2+3x+4+5x+...+98+99x+100.

Can you please show how you got the answer as well, thank you.

 1x+2+3x+4+5x++98+99x+100=  [ 1x+3x+5x+7x++97x+99x ]Part 1+[2+4+6+8++98+100 ]Part 2 

Part 1:

 [ 1x+3x+5x+7x++97x+99x ]=2x[ 1+2+3+4++49+50=(1+50)502 ]50x  =(1+50)50x50x=2550x50x=2500x 

Part 2:

 [2+4+6+8++98+100 ]=2[ 1+2+3+4++49+50=(1+50)502 ]  =(1+50)50=2550 

Part 1 + Part 2 = 2550 + 2500x

heureka Jan 29, 2015

0 Online Users