Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050, Find the sum of 1x+2+3x+4+5x+...+98+99x+100.
Can you please show how you got the answer as well, thank you.
Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050,
Find the sum of 1x+2+3x+4+5x+...+98+99x+100.
Can you please show how you got the answer as well, thank you.
1x+2+3x+4+5x+⋯+98+99x+100= [ 1x+3x+5x+7x+⋯+97x+99x ]⏟Part 1+[2+4+6+8+⋯+98+100 ]⏟Part 2
Part 1:
[ 1x+3x+5x+7x+⋯+97x+99x ]=2x[ 1+2+3+4+⋯+49+50⏟=(1+50)∗502 ]−50x =(1+50)∗50x−50x=2550x−50x=2500x
Part 2:
[2+4+6+8+⋯+98+100 ]=2∗[ 1+2+3+4+⋯+49+50⏟=(1+50)∗502 ] =(1+50)∗50=2550
Part 1 + Part 2 = 2550 + 2500x
Let's work on the 'x" terms, first
Notice that
1x + 99x = 100x
And
3x + 97x = 100x
So, it appears that adding all the x terms pair-wise like this will produce 100x. And we have 25 of them...so 25 x 100x = 2500x
Likewise
2 + 100, 4 + 98, 6 + 96.... all produce 102......and we have 25 pairs of these. So 102 x 25 = 2550
So, the "series" sums to 2550 + 2500x
Using the Gauss method to add 1+2+3+...+98+99+100= 50(1+100)=5050,
Find the sum of 1x+2+3x+4+5x+...+98+99x+100.
Can you please show how you got the answer as well, thank you.
1x+2+3x+4+5x+⋯+98+99x+100= [ 1x+3x+5x+7x+⋯+97x+99x ]⏟Part 1+[2+4+6+8+⋯+98+100 ]⏟Part 2
Part 1:
[ 1x+3x+5x+7x+⋯+97x+99x ]=2x[ 1+2+3+4+⋯+49+50⏟=(1+50)∗502 ]−50x =(1+50)∗50x−50x=2550x−50x=2500x
Part 2:
[2+4+6+8+⋯+98+100 ]=2∗[ 1+2+3+4+⋯+49+50⏟=(1+50)∗502 ] =(1+50)∗50=2550
Part 1 + Part 2 = 2550 + 2500x