+0

# Valentina is investigating potential relationships between hybrid car ownership and the gender of the owner.

+1
52
3

Valentina is investigating potential relationships between hybrid car ownership and the gender of the owner. Assume a survey of 100 persons revealed:

The probability of selecting a person who does not own a hybrid car is 0.315.

If a person does not own a hybrid car, the probability they are female is 0.516.

If a person owns a hybrid, the probability they are male is 0.435.

(You can complete the table below to help you organize the work). If you were to choose a person at random from the sample, determine the probability they have:

a) A hybrid car.

b) A hybrid car given that they are male.

c) Male gender.

d) A hybrid car or male gender.

e) A hybrid car and male gender.

Jan 13, 2021

#1
-1

I'll let you finish: Jan 13, 2021
#2
-1

P.S.    Those numbers in the chart are 'out of 100 '      so  example:    16.254   out of a hundred = .16254

Guest Jan 13, 2021
#3
+2

Let's complete the table, first, GM

One thing  to notice is that it's actually easier  to imagine  1000  persons sampled.....that will  eliminate the decimals (in some cases)

Female                         Male                              Total

Hybrid              685  - 298  = 387        685 * .435 ≈  298        1000 - 315 =  685

Not Hybrid       315* (.516) ≈ 163          315 -163  = 152                               315

Total                                     550                             450                               1000

a)  P (   hybrid car )  =   685/ 1000  =  68.5%

b)  P  (hybrid given male )  =  298 / 685   =  43.5%

c)  P  (male)  =  450/1000 =  45%

d) P (hybrid or male)  = P(hybrid) + P(male) - P(hybrid and male)  =

(685 + 450  - 298) /1000  =

837 / 1000  =   83.7%

e)  P  (hybrid and male)  =   298/1000  =  29.8%

Do you see how I got those   answers???.....that's  the important thing....   Jan 14, 2021