+0  
 
0
1074
2
avatar

Decompose v into two vectors v1 and v2, where v1 is parallel to w and v2 is orthogonal to w.

v = i - j, w = i + 2j

Guest Mar 18, 2017
 #1
avatar+86889 
0

v =  < 1, - 1 >

w = < 1, 2  >

 

v1   = [ v (dot) w  ] / l w l^2  *  < w >

 

v(dot) w   =   1* 1 + 2* -1   =  1 - 2    =   -1

 

l w l  =  sqrt (1^2 + 5^2)   =  sqrt (5)           l w l ^2   = 5

 

So......

 

v1   =   -1 /  (5)  *  <1,  2 >     =   < -1/5, -2/ 5  >

 

v2  =  v - v1  =  < 1 - -1/5, -1 - - 2/5 >  =  < 1 + 1/5, -1 + 2/5 > =   < 6/5,-3/5 >

 

 

Check

Sum of v1 and v2    =  < -1/5 + 6/5, -2/5 + - 3/5 >   =  < 1  -1 >    = v

 

 

cool cool cool

CPhill  Mar 19, 2017
 #2
avatar+19495 
0

Decompose v into two vectors v1 and v2,

where v1 is parallel to w and v2 is orthogonal to w.

v = i - j, w = i + 2j

 

\(\vec{v} = \binom{1}{-1}\\ \vec{w} = \binom{1}{2}\)

\(\begin{array}{rcll} \vec{v_1} &=& \lambda \cdot \vec{w} \\ \vec{v_2} &=& \mu \cdot \vec{w_\perp} \\ \hline \vec{v}=\vec{v_1}+\vec{v_2} &=& \lambda \cdot \vec{w} + \mu \cdot \vec{w_\perp} \\ \vec{v} &=& \lambda \cdot \vec{w} + \mu \cdot \vec{w_\perp} \quad &| \quad \cdot \vec{w} \\ \vec{v}\cdot \vec{w} &=& \lambda \cdot \vec{w}\cdot \vec{w} + \mu \cdot \vec{w_\perp} \cdot \vec{w} \quad &| \quad \vec{w_\perp} \cdot \vec{w} = 0 \quad \vec{w}\cdot \vec{w} = w^2 = 1^2+2^2 = 5\\ \vec{v}\cdot \vec{w} &=& \lambda \cdot w^2 +0 \\ \vec{v}\cdot \vec{w} &=& \lambda \cdot w^2 \quad &| \quad : w^2 \\ \lambda &=& \frac{ \vec{v}\cdot \vec{w} } {w^2} \\ \mathbf{ \vec{v_1} } &\mathbf{=}&\mathbf { \left( \frac{ \vec{v}\cdot \vec{w} } {w^2} \right) \cdot \vec{w} } \\ \mathbf{ \vec{v_2} } &\mathbf{=}&\mathbf { \vec{v} - \vec{v1} }\\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{ \vec{v_1} } &\mathbf{=}&\mathbf { \left( \frac{ \vec{v}\cdot \vec{w} } {w^2} \right) \cdot \vec{w} } \\ & = & \left( \frac{ \binom{1}{-1}\cdot \binom{1}{2} } {5} \right) \cdot \binom{1}{2} \\ & = & \left( \frac{ 1-2 } {5} \right) \cdot \binom{1}{2} \\ & = & \left( \frac{ -1 } {5} \right) \cdot \binom{1}{2} \\ \mathbf{ \vec{v_1} } &\mathbf{=}&\mathbf { \binom{-0.2}{-0.4} } \\\\ \mathbf{ \vec{v_2} } &\mathbf{=}&\mathbf { \binom{1}{-1} - \vec{v1} }\\ & = & \binom{1}{-1} - \binom{-0.2}{-0.4} \\ & = & \binom{1}{-1} + \binom{0.2}{0.4} \\ & = & \binom{1+0.2}{-1+0.4} \\ \mathbf{ \vec{v_2} } &\mathbf{=}&\mathbf { \binom{1.2}{-0.6} } \\ \hline \end{array} \)

 

laugh

heureka  Mar 20, 2017

2 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.