+0  
 
0
1
290
6
avatar+543 

Who can finish it first??

ProMagma  Nov 4, 2017
 #1
avatar+543 
-1

Is anyone going to try?

ProMagma  Nov 4, 2017
 #2
avatar+394 
0

Did you create this problem and do you know the answer? 

What is 'r'? If you give us a number that will make it easier to solve.

Mr.Owl  Nov 4, 2017
edited by Mr.Owl  Nov 4, 2017
 #3
avatar+543 
-1

The problem is that you are trying to minimize the radius of a cone.. and this is the algebraic problem..

 

Good Luck

 

laugh

ProMagma  Nov 4, 2017
 #4
avatar+543 
-1

The derivative of the surface area of a cone..

ProMagma  Nov 4, 2017
 #5
avatar+87699 
+3

0 = pi  ( r^2  + 900 / [ pi^2 * r^4] )^(1/2) +   (pi *r / 2)( r^2  + 900 / [ pi^2 * r^4] )^(-1/2) *(2r - (3600) / [pi^2*r^5] )

 

 

- pi  ( r^2  + 900 / [ pi^2 * r^4] )^(1/2) = (pi *r / 2)( r^2  + 900 / [ pi^2 * r^4] )^(-1/2) *(2r - (3600) / [pi^2*r^5] )

 

 

 

- ( r^2  + 900 / [ pi^2 * r^4] )  =  ( r/2 ) (2r - (3600) / [pi^2*r^5] )

 

 

- ( r^6 * pi^2 + 900)  / [ pi^2 * r^4 ]   =   (r/2) (  2r^6 *pi^2 -3600)  / [pi^2 * r^5 ]

 

- ( r^6 * pi^2 + 900)r   =  (r/2) ( 2r^6 * pi^2 - 3600)

 

- ( r^6 * pi^2 + 900)r  = r ( r^6 * pi^2  - 1800)

 

- r^7*pi^2 - 900r  = r^7 * pi^2 - 1800r

 

2r^7 * pi^2  - 900  r  =   0

 

r ( r^6 * pi^2  - 450)  = 0

 

r = 0     [ no good ]       ..... or........

 

r^6 * pi^2  - 450  = 0

 

r^6 * pi^2  = 450

 

r^6   = 450 / pi^2

 

r^6  =   [225 *2] / pi^2

 

r^6  =  [2  *  15^2 ] / pi^2

 

r  =    6√ 2  * 3√ (15 / pi)  ≈  1.8901

 

 

 

cool cool cool 

CPhill  Nov 5, 2017
 #6
avatar+543 
-1

Good Job CPhill!!

 

I am VERY impressed!!

 

laughlaughlaugh

ProMagma  Nov 6, 2017

21 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.