+0

Very Urgent!

0
236
4

A function f has a horizontal asymptote of y = -4, a vertical asymptote of x = 3, and an x-intercept at (1,0).

Part (a): Let f be of the form $$f(x) = \frac{ax+b}{x+c}$$.Find an expression for f(x).

Part (b): Let f be of the form $$f(x) = \frac{rx+s}{2x+t}$$.Find an expression for f(x).

Aug 21, 2018

#1
+1

A function f has a horizontal asymptote of y = -4, a vertical asymptote of x = 3, and an x-intercept at (1,0).   Find an expression for f(x)....

a)   ax + b

______  =  f(x)

x + c

If the vertical asymptote is 3, then , in the denominator,  3 + c  = 0  and  c   =  -3

If the hrizontla asymptote is -4, then  ax / x  = -4  ⇒  a   = -4

And if the x intercept = ( 1,0), this implies that   a(1) + b  = 0  ⇒  -4(1) + b  = 0  ⇒

-4 + b  = 0  ⇒   b  = 4

Here is a graph : https://www.desmos.com/calculator/ohx3qy9kvt   Aug 21, 2018
#2
+1

b )     rx + s

_____   =  f(x)

2x + t

If the horizontal asymptote  =  -4, then   r / 2  = -4 ⇒  r  = -8

If the vertical asymptote = 3, then  2(3) + t  = 0  ⇒  6 + t  = 0  ⇒  t   = -6

If  (1,0)  is an x intercept, then  r(1) + s  = 0 ⇒  -8(1) + s  = 0 ⇒ - 8 + s  = 0 ⇒

s  = 8

Here's a graph :  https://www.desmos.com/calculator/cown9bo626   Aug 21, 2018
#3
+1

Thanks Chris!

Lightning  Aug 21, 2018
#4
0

OK, Lightning....glad I could help   !!!   CPhill  Aug 21, 2018