We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1
117
2
avatar+322 

y= 8x^3 , y=0 , x=1 , about x=2

 

Not sure how but I got the volume to equal 0 so I clearly did something wrong.

 May 3, 2019

Best Answer 

 #1
avatar+115 
+3

For this question, integrating with respect to y is the way to go >:]

 

Defining R and r

If we have a general volume with the vertical axis of revolution being x = c with the formula \(\int_{a}^{b} \pi*R^2 - \pi*r^2 dy \), we can define \(R = (c - g(y))^2\) and \(r = (c - f(y))^2\)

However, in this case, r stays a constant value of 1 distance away from x = 2, so \(r = 1\)

Now we should define our outer function, \(y = 8x^3\), in terms of y to be g(y).

\(y = 8x^3 \rightarrow \frac{y}{8}=x^3 \rightarrow \sqrt[3]{\frac{y}{8}}=x\) or more simply \(g(y) = \frac{\sqrt[3]{y}}{2}\)

Therefore, \(R = \pi*(2 - \frac{\sqrt[3]{y}}{2})^2\)

 

Finding Bounds of Integration

Our original x defined bounds of integration were [0,1], so let's redefine with our new g(y) equation set to 0 and 1.

\(0 = \frac{\sqrt[3]{y}}{2} \rightarrow y = 0\) and \(1 = \frac{\sqrt[3]{y}}{2} \rightarrow 2 = \sqrt[3]{y} \rightarrow y=8\)

So, our new bounds of integration are [0,8].

 

Computing the Integral

Our integral then becomes \(\int_{0}^{8} \pi(2 - \frac{\sqrt[3]{y}}{2})^2 - \pi dy\). I'm a little too lazy to work out the integral in LaTeX right now lol so \(\int_{0}^{8} \pi(2 - \frac{\sqrt[3]{y}}{2})^2 - \pi dy = 15.0796\)

.
 May 3, 2019
edited by Anthrax  May 3, 2019
 #1
avatar+115 
+3
Best Answer

For this question, integrating with respect to y is the way to go >:]

 

Defining R and r

If we have a general volume with the vertical axis of revolution being x = c with the formula \(\int_{a}^{b} \pi*R^2 - \pi*r^2 dy \), we can define \(R = (c - g(y))^2\) and \(r = (c - f(y))^2\)

However, in this case, r stays a constant value of 1 distance away from x = 2, so \(r = 1\)

Now we should define our outer function, \(y = 8x^3\), in terms of y to be g(y).

\(y = 8x^3 \rightarrow \frac{y}{8}=x^3 \rightarrow \sqrt[3]{\frac{y}{8}}=x\) or more simply \(g(y) = \frac{\sqrt[3]{y}}{2}\)

Therefore, \(R = \pi*(2 - \frac{\sqrt[3]{y}}{2})^2\)

 

Finding Bounds of Integration

Our original x defined bounds of integration were [0,1], so let's redefine with our new g(y) equation set to 0 and 1.

\(0 = \frac{\sqrt[3]{y}}{2} \rightarrow y = 0\) and \(1 = \frac{\sqrt[3]{y}}{2} \rightarrow 2 = \sqrt[3]{y} \rightarrow y=8\)

So, our new bounds of integration are [0,8].

 

Computing the Integral

Our integral then becomes \(\int_{0}^{8} \pi(2 - \frac{\sqrt[3]{y}}{2})^2 - \pi dy\). I'm a little too lazy to work out the integral in LaTeX right now lol so \(\int_{0}^{8} \pi(2 - \frac{\sqrt[3]{y}}{2})^2 - \pi dy = 15.0796\)

Anthrax May 3, 2019
edited by Anthrax  May 3, 2019
 #2
avatar+322 
+1

Thank you.  Whenever the object is rotating around an axis that's not the x-axis or y-axis I always get confused.

Ruublrr  May 3, 2019

11 Online Users