+0  
 
0
39
2
avatar+703 

So far in my attempt i have found the normal area of the shaded region then realising i cannot convert it into the volume of revolution (or i don't know how to)

please explain thank you 

 Jan 23, 2019
 #1
avatar+95884 
+2

We can use the "Ring Method" to solve this

 

The volume is   =  volume of top function rotated about the x axis from x = .5 to x = 1   less the  volume of the bottom function rotated about the x axis  from x = .5 to x = 1

 

So  we have

 

     1                              1

pi  ∫   (x + 1/x)^2 dx    -    pi  ∫  ( 2x)^2 dx    =

     .5                            .5

 

     1                                          1

pi  ∫   x^2 + 2 + 1 /x^2  dx  -  pi  ∫  4x^2   dx    =

    .5                                         .5

 

     1

pi  ∫   2  + 1/x^2  - 3x^2   dx  =

    5

             1              1             1

pi (    2x ]      - 1 /x ]     -  x^3 ]    )   =

            .5              .5            .5

 

pi * ( [ 2 - 1 ] - [ 1 - 2 ] - [ 1 - .125 ]  )  =

 

pi  ( 1 +  1  - 0.875  )  =

 

[  1.125 pi   ]  units^3

 

 

 

cool cool cool

 Jan 23, 2019
edited by CPhill  Jan 23, 2019
 #2
avatar+703 
+1

noted!!

thank you very much

YEEEEEET  Jan 23, 2019

15 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.