{[(-3/5+1/10*3)/[9/20/(-1/4-1/5)]}-{3/4-2/5/[1/20-1/4]/[-5/6-1/13*(5/4-1/6)}=

Guest Dec 18, 2018

edited by
Guest
Dec 18, 2018

#1**+2 **

I think I can convert this into LaTex. Does it look like this \(\left(\frac{\left(-\frac{3}{5}+\frac{1}{10}\cdot \:3\right)}{\left(\frac{\frac{9}{20}}{\left(-\frac{1}{4}-\frac{1}{5}\right)}\right)}\right)-\frac{3}{4}-\frac{\frac{2}{5}}{\frac{\left(\frac{1}{20}-\frac{1}{4}\right)}{\left(-\frac{5}{6}-\frac{1}{13}\left(\frac{5}{4}-\frac{1}{6}\right)\right)}}\) . Sorry, it's a bit hard to read. First, try to start from the bottom.

tertre Dec 18, 2018

#2**+2 **

I have finally solved the problem. Oh, you changed the problem! So, is the answer \(\boxed{-\frac{137}{60}\quad}.\)

Now, the LATEX: \(\left(\frac{\left(-\frac{3}{5}+\frac{1}{10}\cdot \:3\right)}{\left(\frac{\frac{9}{20}}{\left(-\frac{1}{4}-\frac{1}{5}\right)}\right)}\right)-\frac{3}{4}-\frac{\frac{2}{5}}{\frac{\left(\frac{1}{20}-\frac{1}{4}\right)}{\left(-\frac{5}{6}-\frac{1}{13}\left(\frac{5}{4}-\frac{1}{6}\right)\right)}}\)

tertre
Dec 18, 2018