+0

# w*f

+1
121
2

{[(-3/5+1/10*3)/[9/20/(-1/4-1/5)]}-{3/4-2/5/[1/20-1/4]/[-5/6-1/13*(5/4-1/6)}=

Dec 18, 2018
edited by Guest  Dec 18, 2018

#1
+2

I think I can convert this into LaTex. Does it look like this $$\left(\frac{\left(-\frac{3}{5}+\frac{1}{10}\cdot \:3\right)}{\left(\frac{\frac{9}{20}}{\left(-\frac{1}{4}-\frac{1}{5}\right)}\right)}\right)-\frac{3}{4}-\frac{\frac{2}{5}}{\frac{\left(\frac{1}{20}-\frac{1}{4}\right)}{\left(-\frac{5}{6}-\frac{1}{13}\left(\frac{5}{4}-\frac{1}{6}\right)\right)}}$$ . Sorry, it's a bit hard to read. First, try to start from the bottom.

Dec 18, 2018
#2
+2

I have finally solved the problem. Oh, you changed the problem! So, is the answer $$\boxed{-\frac{137}{60}\quad}.$$

Now, the LATEX: $$\left(\frac{\left(-\frac{3}{5}+\frac{1}{10}\cdot \:3\right)}{\left(\frac{\frac{9}{20}}{\left(-\frac{1}{4}-\frac{1}{5}\right)}\right)}\right)-\frac{3}{4}-\frac{\frac{2}{5}}{\frac{\left(\frac{1}{20}-\frac{1}{4}\right)}{\left(-\frac{5}{6}-\frac{1}{13}\left(\frac{5}{4}-\frac{1}{6}\right)\right)}}$$

tertre  Dec 18, 2018