Right triangle ABC has AB = 3, BC = 4, and AC = 5. Square XYZW is inscribed in triangle ABC with X and Y on overline AC, W on overline AB, and Z on overline BC. What is the side length of the square?
Right \(\triangle{ABC}\) has AB = 3, BC = 4, and AC = 5.
Square XYZW is inscribed in triangle ABC with X and Y on \(\overline{AC}\),
W on \(\overline{AB}\), and
Z on \(\overline{BC}\).
What is the side length of the square?
Let s is the side length oft the square \( = \overline{XY} = \overline{YZ} = \overline{ZW} = \overline{WX}\)
Let h = \(\overline{BT}\)
Let A the area of \(\triangle{ABC}\)
h = ?
\(\begin{array}{|rcll|} \hline A &=& \frac{\overline{AB} \cdot \overline{BC} }{2} \\ A &=& \frac{3\cdot 4}{2} \\ \mathbf{A} &\mathbf{=}& \mathbf{6} \\\\ A &=& \frac{\overline{AC}\cdot h}{2} \\ A &=& \frac{5\cdot h}{2} \quad & | \quad \mathbf{A=6} \\ 6 &=& \frac{5\cdot h}{2} \\ \mathbf{h} &\mathbf{=}& \mathbf{ \frac{12}{5} } \\ \hline \end{array}\)
\(\mathbf{\overline{BW} =\ ?}\)
\(\begin{array}{|rcll|} \hline \frac{ \overline{BW} } {s} &=& \frac{ \overline{AB} } { \overline{AC} } \\ \frac{ \overline{BW} } {s} &=& \frac{ 3 } { 5 } \\ \mathbf{ \overline{BW} } & \mathbf{=} & \mathbf{ \frac{3}{5}s } \\ \hline \end{array}\)
\(\mathbf{\overline{BZ} =\ ?} \)
\(\begin{array}{|rcll|} \hline \frac{ \overline{BZ} } {s} &=& \frac{ \overline{BC} } { \overline{AC} } \\ \frac{ \overline{BZ} } {s} &=& \frac{ 4 } { 5 } \\ \mathbf{\overline{BZ}} &\mathbf{=}& \mathbf{\frac{4}{5}s } \\ \hline \end{array}\)
s = ?
\(\begin{array}{|rcll|} \hline A_{\triangle{ZBW}} = \frac{ \overline{BW}\cdot \overline{BZ} } {2} &=& \frac{s\cdot(h-s)} {2} \\ \overline{BW}\cdot \overline{BZ} &=& s\cdot(h-s) \quad & | \quad \mathbf{ \overline{BW} =\frac{3}{5}s } \quad \mathbf{ \overline{BZ} =\frac{4}{5}s } \quad \mathbf{h=\frac{12}{5}} \\ \frac{3}{5}s \cdot \frac{4}{5}s &=& s\cdot(\frac{12}{5}-s) \\ \frac{12}{25}s &=& \frac{12}{5}-s \\ s+\frac{12}{25}s &=& \frac{12}{5} \\ s \cdot \left(1+\frac{12}{25} \right) &=& \frac{12}{5} \\ s \cdot \left(\frac{25+12}{25} \right) &=& \frac{12}{5} \\ s \cdot \left(\frac{37}{25} \right) &=& \frac{12}{5} \\ s &=& \frac{25}{37} \cdot \frac{12}{5} \\ s &=& \frac{5}{37} \cdot 12 \\ s &=& \frac{60}{37} \\ \mathbf{s} &\mathbf{=}& \mathbf{1.\overline{621}} \\ \hline \end{array}\)
The side length oft the square is \(\mathbf{1.\overline{621}}\)
Thanks, heureka....here's another way using similar triangles...
Referring to heureka's pic....let the side of the square = s ...let WA = x and let BW = 3 - x
Now....triangles ABC, AXW and WBZ are all similar
Using triangles ABC and AXW, we have that XW / AW = BC/ AC → s / x = 4 / 5 → s = (4/5)x → s = .8x
And using triangles ABC and WBZ, we have that BW / ZW = BA / CA → (3 - x ) / s = 3 / 5 → (3 - x) / (.8x) = .6
Multiply both sides by .8x and we have that
3 - x = .48x add x to both sides
3 = 1.48x divide both sides by 1.48
3 / 1.48 = x = 75 / 37 ..... and s is .8 of this = 600 / 370 = 60/37 units