+0

# Wahhh im dumb

0
242
1

What interval consists of all $w$ which satisfy ${\bf neither}$ $-2(6+2w)\le -16$ nor $-3w\ge 18$ ?

Jul 13, 2019

#1
+8880
+4

What interval consists of all $$w$$ which satisfy $$\bf neither$$ $$-2(6+2w)\le -16$$ nor $$-3w\ge 18$$ ?

If  w  makes the inequality   -2(6 + 2w) ≤ -16   false, then

it must make the inequality  -2(6 + 2w) > -16   true.

-2(6 + 2w)  >  -16

Divide both sides by  -2, a negative number, so flip the sign

6 + 2w  <  8

Subtract  6  from both sides of the inequality.

2w  <  2

Divide both sides by  2, a positive number, so don't flip the sign

w  <  1

If   -2(6 + 2w) > -16   then   w < 1

If  w  makes the inequality   -3w ≥ 18   false, then

it must make the inequality  -3w < 18   true.

-3w  <  18

Divide both sides by  3, a negative number, so flip the sign.

w  >  -6

If   -3w < 18   then   w > -6

So the solution to the question is all  w  such that   w < 1   and   w > -6

That is all  w  in the interval   (-6, 1)

Jul 13, 2019