+0  
 
0
752
3
avatar+980 

We define a function \(f(x)\) such that \(f(11)=34\), and if there exists an integer \(a\) such that \(f(a)=b\), then \(f(b)\) is defined and \(f(b)=3b+1\) if \(b\) is odd \(f(b)=\frac{b}{2}\) if \(b\) is even. What is the smallest possible number of integers in the domain of \(f\)?

 Apr 12, 2020
 #1
avatar
0

The smallest number of integers in the domain of f is 22.

 Apr 13, 2020
 #2
avatar+980 
0

That isn't correct

qwertyzz  Apr 13, 2020
 #3
avatar+33661 
+2

This relates to the Collatz conjecture.  For the specific numbers quoted there are 15 different integers involved (that is, if I've interpreted the question correctly!), namely: 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

 Apr 13, 2020

1 Online Users

avatar