Let n be a positive integer. If a≡(32n+4)−1(mod9), what is the remainder when a is divided by 9?
Let n be a positive integer. If a≡(32n+4)−1(mod9),
what is the remainder when a is divided by 9?
a≡(32n+4)−1(mod9)32n+4=(32)n+4=9n+4gcd(9n+4,9)=gcd(4,9)=1!a≡(9n+4)−1(mod9)(9n+4)−1(mod9)=(9n+4)ϕ(9)−1|ϕ(9)=9∗(1−13)=6=(9n+4)5(9n+4)−1(mod9)=(9n+4)5(mod9)a≡(9n+4)5(mod9)a≡(50)95n+(51)94n∗4+(52)93n∗42+(53)92n∗43+(54)9n∗44⏟=0(mod9)+(55)45(mod9)a≡(55)45(mod9)a≡45(mod9)a≡1024(mod9)a≡1024−113∗9(mod9)a≡7(mod9)