Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
784
3
avatar+174 

Let n be a positive integer. If a(32n+4)1(mod9), what is the remainder when a is divided by 9?

 Jul 13, 2020
 #1
avatar
0

I looked at some cases, and it always works out to 2.

 Jul 13, 2020
 #2
avatar
0

No matter what n is, a = 7

7 mod 9 = 7

 Jul 13, 2020
 #3
avatar+26396 
+1

Let n be a positive integer. If a(32n+4)1(mod9),
what is the remainder when a is divided by 9?

 

a(32n+4)1(mod9)32n+4=(32)n+4=9n+4gcd(9n+4,9)=gcd(4,9)=1!a(9n+4)1(mod9)(9n+4)1(mod9)=(9n+4)ϕ(9)1|ϕ(9)=9(113)=6=(9n+4)5(9n+4)1(mod9)=(9n+4)5(mod9)a(9n+4)5(mod9)a(50)95n+(51)94n4+(52)93n42+(53)92n43+(54)9n44=0(mod9)+(55)45(mod9)a(55)45(mod9)a45(mod9)a1024(mod9)a10241139(mod9)a7(mod9)

 

laugh

 Jul 14, 2020

2 Online Users

avatar