+0  
 
0
41
2
avatar+67 

What are the factors of the polynomial function?

Use the rational root theorem to determine the factors.

f(x)=2x^3+x^2−8x−4                   

skye25  Nov 1, 2018

Best Answer 

 #1
avatar+2786 
+2

\(\text{The possible rational roots are of the form }\dfrac p q \\ \text{where }p \text{ is a factor of the constant term, in this case -4}\\ \text{and }q \text{ is a factor of the highest order term, i.e. 2}\\ \text{so possible roots are}\\ \text{factors of -4 are} \pm 1,~\pm 2,~\pm 4\\ \text{factors of 2 are }\pm 1,~\pm 2\\ \text{so our possible roots are}\\ x=\pm \dfrac 1 2,~\pm 1,~\pm 2,~\pm 4\)

 

\(\text{we plug these into }f(x) \text{ to determine which are actually roots}\\ \text{and see that}\ x = -2,~-\dfrac 1 2,~2\\ \text{are the only actual roots, and as }f(x) \text{ is degree 3 that is all 3 of them}\\ \text{so }f(x) = c(x+2)\left(x+\dfrac 1 2\right)(x-2), \text{ for some }c \in \mathbb{Q} \\ c \text{ is the coefficient of the }x^3 \text{ term so}\\ f(x) = 2(x+2)\left(x+\dfrac 1 2\right)(x-2)\)

Rom  Nov 1, 2018
edited by Rom  Nov 2, 2018
 #1
avatar+2786 
+2
Best Answer

\(\text{The possible rational roots are of the form }\dfrac p q \\ \text{where }p \text{ is a factor of the constant term, in this case -4}\\ \text{and }q \text{ is a factor of the highest order term, i.e. 2}\\ \text{so possible roots are}\\ \text{factors of -4 are} \pm 1,~\pm 2,~\pm 4\\ \text{factors of 2 are }\pm 1,~\pm 2\\ \text{so our possible roots are}\\ x=\pm \dfrac 1 2,~\pm 1,~\pm 2,~\pm 4\)

 

\(\text{we plug these into }f(x) \text{ to determine which are actually roots}\\ \text{and see that}\ x = -2,~-\dfrac 1 2,~2\\ \text{are the only actual roots, and as }f(x) \text{ is degree 3 that is all 3 of them}\\ \text{so }f(x) = c(x+2)\left(x+\dfrac 1 2\right)(x-2), \text{ for some }c \in \mathbb{Q} \\ c \text{ is the coefficient of the }x^3 \text{ term so}\\ f(x) = 2(x+2)\left(x+\dfrac 1 2\right)(x-2)\)

Rom  Nov 1, 2018
edited by Rom  Nov 2, 2018
 #2
avatar+67 
+1

thank you

skye25  Nov 1, 2018

22 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.