+0  
 
0
77
1
avatar+68 

What are the fourth roots of \(-3+3\sqrt{3}i\)?

Enter your answer by filling in the boxes. Enter the roots in order of increasing angle measure in the simplest form.

 

 

4 answers in form:

 

___cis(___)

 Jun 10, 2020
 #1
avatar+21907 
0

To find the primary fourth root of the complex number  a + b·i,  place the number into  r·cis( theta ) form.

 

r  =  sqrt( a2 + b2 )

theta  =  tan-1( b/a )    [make certain that the angle is in the correct quadrant; in this case, the 2nd[

 

The primary fourth root will be:  r1/4·cis( theta/4 ).

 

To find the other three roots, change the angle by adding  pi/2, pi, and 3pi/2 to the original angle.  

 Jun 10, 2020

20 Online Users

avatar
avatar