+0  
 
0
393
3
avatar

what are the last 2 digits of 7^2800?

Guest Nov 20, 2014

Best Answer 

 #3
avatar+19992 
+8

what are the last 2 digits of 7^2800  or what is $$7^{2800} \mod 100$$ ?

$$7^{2800} \mod 100 \quad | \quad 2800 = 2^4*175\\
= 7^{ 16 * 175 } \mod 100 \\
= ( 7^{16} )^{175} \mod 100 \quad | \quad 7^{16}= (7^4)^4\\
= ( (7^4)^4 )^{175} \mod 100 \quad | \quad 7^{4}= (7^2)^2\\
= ( ( (7^2)^2 )^4 )^{175} \mod 100 \quad | \quad 7^2 = 49\\
= ( ( (49)^2 )^4 )^{175} \mod 100 \quad | \quad 49^2 = 2401\\
= ( ( 2401 )^4 )^{175} \mod 100 \quad | \quad 2401 \mod 100 = 1 \quad\textcolor[rgb]{1,0,0}{ x^{a*b} \mod d = (x^a\mod d)^b \mod d }\\
= ( ( 1 )^4 )^{175} \mod 100 \quad | \quad 1^4 = 1 \\
= ( 1 )^{175} \mod 100 \quad | \quad 1^{175} = 1 \\
= 1 \mod 100 \\\\
7^{2800} \mod 100 = 1 \mod 100 \quad | \quad 1 \mod 100 = 01$$

the last 2 digits of 7^2800 = 01

heureka  Nov 21, 2014
 #1
avatar+17743 
+8

The last digit of 7^x rotates among 1, 7, 9, and 3 because:

7^0  =    1     7^4 = 7^4 x 7^0 = 2401           7^8 = 7^4 x 7^4 x 7^0 = 5764801      ...

7^1  =    7     7^5 = 7^4 x 7^1 = 16707         7^9 = 7^4 x 7^4 x 7^1 = 40353607    ...

7^2  =  49     7^6 = 7^4 x 7^2 = 117649        ...

7^3 = 343     7^7 = 7^4 x 7^3 = 823543        ...

What I'm trying to show is extra factors of 7^4 doesn't change the last digit of the answer.

So divide the exponent by 4,

if the remainder is 0, the last digit will be a 1

if the remainder is 1, the last digit will be a 7

if the remainder is 2, the last digit will be a 9

if the remainder is 3, the last digit will be a 3

Dividing the exponent of 2800 by 4, gives a remainder of 0, so the last digit will be a 1.

geno3141  Nov 20, 2014
 #2
avatar
0

Thank you for the response. What you answered is something i already know... my question is to find the last 2 digits and not just the last digit. So essentially, when 7^2800 is divided by 100, it will give the required answer.

Guest Nov 20, 2014
 #3
avatar+19992 
+8
Best Answer

what are the last 2 digits of 7^2800  or what is $$7^{2800} \mod 100$$ ?

$$7^{2800} \mod 100 \quad | \quad 2800 = 2^4*175\\
= 7^{ 16 * 175 } \mod 100 \\
= ( 7^{16} )^{175} \mod 100 \quad | \quad 7^{16}= (7^4)^4\\
= ( (7^4)^4 )^{175} \mod 100 \quad | \quad 7^{4}= (7^2)^2\\
= ( ( (7^2)^2 )^4 )^{175} \mod 100 \quad | \quad 7^2 = 49\\
= ( ( (49)^2 )^4 )^{175} \mod 100 \quad | \quad 49^2 = 2401\\
= ( ( 2401 )^4 )^{175} \mod 100 \quad | \quad 2401 \mod 100 = 1 \quad\textcolor[rgb]{1,0,0}{ x^{a*b} \mod d = (x^a\mod d)^b \mod d }\\
= ( ( 1 )^4 )^{175} \mod 100 \quad | \quad 1^4 = 1 \\
= ( 1 )^{175} \mod 100 \quad | \quad 1^{175} = 1 \\
= 1 \mod 100 \\\\
7^{2800} \mod 100 = 1 \mod 100 \quad | \quad 1 \mod 100 = 01$$

the last 2 digits of 7^2800 = 01

heureka  Nov 21, 2014

6 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.