We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
93
4
avatar+479 

My Work:

Okay so the IQR is the range of the middle half of the data set, or the difference between the third and first quartiles.

I lined up the numbers from least to greatest:

10, 12, 14, 15, 15.5, 16, 17.5, 18, 19

Then I found the first and third quartiles.

Min       Q1        Q2          Q3        Max

10, 12, 14, 15, 15.5, 16, 17.5, 18, 19

So then I did 17.5 - 14 = 3.5 This doesn't match any of the choices above.

 Feb 7, 2019
 #1
avatar+99659 
+1

10    12   14    15      15.5     16   17.5    18    19

 

Q2  =   15.5

 

Q1 =     [12 + 14] / 2   =    26 / 2  =   13

 

Q3  =  [ 17.5 + 18 ] / 2   =  17.75

 

So....the IQR is just     17.75 - 13   =   4.75

 

 

cool cool cool

 Feb 7, 2019
 #2
avatar+479 
+1

Can you tell me why those numbers had to be added so I know for future questions like this?

awsometrunt14  Feb 7, 2019
 #3
avatar+99659 
+2

We are actually finding 3 medians

 

The first is the median of the data set = 15.5   =  Q2

 

Then....we look at the four data points to the left of Q2

These are 10 12   14  15

The median of these  = [ 12 + 14]/2  = 13   =  Q1

 

And then we do the same thing with the four data points to the right of Q2 

These are  16    17.5 18   19

The median of these =  [ 17.5 + 18 ] / 2 =  17.75    =  Q3

 

So....the IQR   =  Q3 - Q1   =   4.5

 

Hope that helps

 

 

cool cool cool

CPhill  Feb 7, 2019
 #4
avatar+479 
+2

Oh okay, I get it. Thanks, CPhill!!! smiley

awsometrunt14  Feb 8, 2019

11 Online Users

avatar