We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
669
1
avatar+559 

What does the fundamental theorem of algebra state about the equation 2x2+8x+14=0

 

 Mar 4, 2018
 #1
avatar+2340 
+2

The following diagram illustrates the gist of the Fundamental Theorem of Algebra.

 

 \(P(x)=\underbrace{ax^n+bx^{n-1}+cx^{n-2}+...+yx+z}\\ \hspace{30mm}\text{n complex roots}\)

 

The degree of the polynomial of \(2x^2+8x+14\) is 2, so the number of complex roots is also 2. 

 

You can use the quadratic formula to find those roots.

 

\(2x^2+8x+14=0\) Apply the quadratic formula!
\(x_{1,2}=\frac{-8\pm\sqrt{8^2-4*2*14}}{2*2}\) Now it is a matter of simplifying. 
\(x_{1,2}=\frac{-8\pm\sqrt{64-112}}{4}\)  
\(x_{1,2}=\frac{-8\pm\sqrt{-48}}{4}\)  
\(x_{1,2}=\frac{-8\pm\sqrt{48*-1}}{4}\)  
\(x_{1,2}=\frac{-8\pm i\sqrt{48}}{4}\)  
\(x_{1,2}=\frac{-8\pm i\sqrt{16*3}}{4}\)  
\(x_{1,2}=\frac{-8\pm 4i\sqrt{3}}{4}\)  
\(x_{1,2}=-2\pm i\sqrt{3}\)  
   
 Mar 4, 2018

27 Online Users

avatar
avatar