Here's my understanding of it, Melody......
11 / 0 is "undefined" because we can't multiply anything by 0 in the denominator to return the "11" in the numerator
But.....consider......
0 / 0
We could multiply the denominator by anything to return the 0 in the numerator....thus....this is "indeterminate"....we can't determine exactly what this "thing" is......
It might be "pi"...it might be "10"....it might be "3.45612".......etc.
![]()
To see why Melody's answer is true......consider the following where n is non-zero
0n / 0n =
0n-n =
00
But....what's the problem???? .....Note that......in the fraction above, the denominator 0n = 0 .....and we can't divide by 0.......
[It's actually more appropriate to term this situation, "indeterminate" ]
![]()
But that number n must be strictly greater than 0, because you can't have 0 to a power less than (or equal to) 0.
What is the difference between undefined and indeterminate Chris ?
Are they interchangable terms?
Here's my understanding of it, Melody......
11 / 0 is "undefined" because we can't multiply anything by 0 in the denominator to return the "11" in the numerator
But.....consider......
0 / 0
We could multiply the denominator by anything to return the 0 in the numerator....thus....this is "indeterminate"....we can't determine exactly what this "thing" is......
It might be "pi"...it might be "10"....it might be "3.45612".......etc.
![]()