+0  
 
+5
1323
4
avatar

What is 2^30,000?

 Apr 22, 2015

Best Answer 

 #3
avatar+118689 
+13

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

Well that is just not true ...

 

let

$$\\y=2^{30000}\\
log\;y=log2^{30000}\\
log\;y=30000log2\\
log\;y=9030.89987\\
y=10^{9030.89987}\\
y=10^{9030+0.89987}\\
y=10^{0.89987}\times 10^{9030}\\
y=7.940904992\times 10^{9030}$$

 

And yes MG, that is a VERY large number :)

 Apr 23, 2015
 #1
avatar
0

infinity

 Apr 22, 2015
 #2
avatar+4711 
+8

You could say infinity, or.

 

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

 

infinity.... -_-

 

So the calculator can do 100000000*9999999 but not that.

 

Wow that must be a huge number

 Apr 22, 2015
 #3
avatar+118689 
+13
Best Answer

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

Well that is just not true ...

 

let

$$\\y=2^{30000}\\
log\;y=log2^{30000}\\
log\;y=30000log2\\
log\;y=9030.89987\\
y=10^{9030.89987}\\
y=10^{9030+0.89987}\\
y=10^{0.89987}\times 10^{9030}\\
y=7.940904992\times 10^{9030}$$

 

And yes MG, that is a VERY large number :)

Melody Apr 23, 2015
 #4
avatar+4711 
+5

Lol. Wow 10 more digits

 Apr 23, 2015

1 Online Users