+0

# What is 2^30,000?

+5
554
4

What is 2^30,000?

Guest Apr 22, 2015

#3
+93664
+13

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

Well that is just not true ...

let

$$\\y=2^{30000}\\ log\;y=log2^{30000}\\ log\;y=30000log2\\ log\;y=9030.89987\\ y=10^{9030.89987}\\ y=10^{9030+0.89987}\\ y=10^{0.89987}\times 10^{9030}\\ y=7.940904992\times 10^{9030}$$

And yes MG, that is a VERY large number :)

Melody  Apr 23, 2015
#1
0

infinity

Guest Apr 22, 2015
#2
+4664
+8

You could say infinity, or.

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

infinity.... -_-

So the calculator can do 100000000*9999999 but not that.

Wow that must be a huge number

MathsGod1  Apr 22, 2015
#3
+93664
+13

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

Well that is just not true ...

let

$$\\y=2^{30000}\\ log\;y=log2^{30000}\\ log\;y=30000log2\\ log\;y=9030.89987\\ y=10^{9030.89987}\\ y=10^{9030+0.89987}\\ y=10^{0.89987}\times 10^{9030}\\ y=7.940904992\times 10^{9030}$$

And yes MG, that is a VERY large number :)

Melody  Apr 23, 2015
#4
+4664
+5

Lol. Wow 10 more digits

MathsGod1  Apr 23, 2015