+0  
 
+5
496
4
avatar

What is 2^30,000?

Guest Apr 22, 2015

Best Answer 

 #3
avatar+92805 
+13

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

Well that is just not true ...

 

let

$$\\y=2^{30000}\\
log\;y=log2^{30000}\\
log\;y=30000log2\\
log\;y=9030.89987\\
y=10^{9030.89987}\\
y=10^{9030+0.89987}\\
y=10^{0.89987}\times 10^{9030}\\
y=7.940904992\times 10^{9030}$$

 

And yes MG, that is a VERY large number :)

Melody  Apr 23, 2015
 #1
avatar
0

infinity

Guest Apr 22, 2015
 #2
avatar+4664 
+8

You could say infinity, or.

 

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

 

infinity.... -_-

 

So the calculator can do 100000000*9999999 but not that.

 

Wow that must be a huge number

MathsGod1  Apr 22, 2015
 #3
avatar+92805 
+13
Best Answer

$${{\mathtt{2}}}^{{\mathtt{30\,000}}} \approx \infty$$

Well that is just not true ...

 

let

$$\\y=2^{30000}\\
log\;y=log2^{30000}\\
log\;y=30000log2\\
log\;y=9030.89987\\
y=10^{9030.89987}\\
y=10^{9030+0.89987}\\
y=10^{0.89987}\times 10^{9030}\\
y=7.940904992\times 10^{9030}$$

 

And yes MG, that is a VERY large number :)

Melody  Apr 23, 2015
 #4
avatar+4664 
+5

Lol. Wow 10 more digits

MathsGod1  Apr 23, 2015

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.