Input: What is a: sqrt(4+sqrt(16+16a))+sqrt(1+sqrt(1+a))=6
Intepretation: Solve for a in √4+√16+16a+√1+√1+a=6
Simplify:
√4+4√1+a+√1+√1+a=6
We know that √4+4√1+a is √4=2 times larger than √1+√1+a
Merge:
3√1+√1+a=6
Divide both sides by a factor of 3:
√1+√1+a=2
Since we know that √4=2
Therefore:
1+√1+a=4
√1+a=3
Since √9=3
1+a=9
a=8
Q.E.D.
(For one to solve this question, you just need to know the basic ideas of squares and powers (And some work) :P)
What is a: sqrt(4+sqrt(16+16a))+sqrt(1+sqrt(1+a))=6
(√4+√16+16a+√1+√1+a=6.)
√4+√16+16a+√1+√1+a=6√4+√16(1+a)+√1+√1+a=6√4+4√1+a+√1+√1+a=6√4(1+√1+a)+√1+√1+a=62√1+√1+a+√1+√1+a=63√1+√1+a=6|:3√1+√1+a=2|square both sides1+√1+a=4|−1√1+a=3|square both sides1+a=9|−1a=8
Proof:
√4+√16+16a+√1+√1+a?=6a=8√4+√16+16⋅8+√1+√1+8?=6√4+√144+√1+3?=6√4+12+√4?=6√16+2?=64+2?=66!=6✓