+0  
 
+1
402
2
avatar

What is a:   sqrt(4+sqrt(16+16a))+sqrt(1+sqrt(1+a))=6.

Guest Aug 18, 2017
 #1
avatar+178 
+1

Input: What is a:   sqrt(4+sqrt(16+16a))+sqrt(1+sqrt(1+a))=6

Intepretation: Solve for \(a\) in \(\sqrt{4+\sqrt{16+16a}}+\sqrt{1+\sqrt{1+a}}=6\)

Simplify:

\(\sqrt{4+4\sqrt{1+a}}+\sqrt{1+\sqrt{1+a}}=6\)

We know that \(\sqrt{4+4\sqrt{1+a}}\) is \(\sqrt4=2\) times larger than \(\sqrt{1+\sqrt{1+a}}\)

Merge:

\(3\sqrt{1+\sqrt{1+a}}=6\)

Divide both sides by a factor of 3:

\(\sqrt{1+\sqrt{1+a}}=2\)

Since we know that \(\sqrt4=2\)

Therefore:

\(1+\sqrt{1+a}=4\)

\(\sqrt{1+a}=3\)

Since \(\sqrt9=3\)

\(1+a=9\)

\(a=8\)

Q.E.D.

(For one to solve this question, you just need to know the basic ideas of squares and powers (And some work) :P)

Jeffes02  Aug 18, 2017
edited by Jeffes02  Aug 18, 2017
 #2
avatar+19834 
+1

What is a:   sqrt(4+sqrt(16+16a))+sqrt(1+sqrt(1+a))=6

(\(\sqrt{4+\sqrt{16+16a}}+\sqrt{1+\sqrt{1+a}}=6.\))

 

 

\(\begin{array}{|rcll|} \hline \sqrt{4+\sqrt{16+16a}}+\sqrt{1+\sqrt{1+a}} &=& 6 \\ \sqrt{4+\sqrt{16(1+a)}}+\sqrt{1+\sqrt{1+a}} &=& 6 \\ \sqrt{4+4\sqrt{1+a}}+\sqrt{1+\sqrt{1+a}} &=& 6 \\ \sqrt{4(1+\sqrt{1+a})}+\sqrt{1+\sqrt{1+a}} &=& 6 \\ 2\sqrt{1+\sqrt{1+a}}+\sqrt{1+\sqrt{1+a}} &=& 6 \\ 3\sqrt{1+\sqrt{1+a}} &=& 6 \quad & | \quad : 3 \\ \sqrt{1+\sqrt{1+a}} &=& 2 \quad & | \quad \text{square both sides} \\ 1+\sqrt{1+a} &=& 4 \quad & | \quad -1 \\ \sqrt{1+a} &=& 3 \quad & | \quad \text{square both sides} \\ 1+a &=& 9 \quad & | \quad -1 \\ \mathbf{ a } & \mathbf{=} & \mathbf{8} \\ \hline \end{array}\)

 

Proof:

\(\begin{array}{rcll} \sqrt{4+\sqrt{16+16a}}+\sqrt{1+\sqrt{1+a}} &\overset{?}{=}& 6 \qquad a = 8\\ \sqrt{4+\sqrt{16+16\cdot 8}}+\sqrt{1+\sqrt{1+8}} & \overset{?}{=} & 6 \\ \sqrt{4+\sqrt{144}}+\sqrt{1+3} & \overset{?}{=} & 6 \\ \sqrt{4+12}+\sqrt{4} & \overset{?}{=} & 6 \\ \sqrt{16}+2 & \overset{?}{=} & 6 \\ 4+2 & \overset{?}{=} & 6 \\ 6 & \overset{!}{=} & 6 \quad \checkmark\\ \end{array}\)

 

laugh

heureka  Aug 18, 2017

12 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.