Find the following limit:
lim_(theta->0) (tan(theta))/theta
Using tan(theta) = (sin(theta))/(cos(theta)), write (tan(theta))/theta as (tan(theta))/theta:
lim_(theta->0) (sin(theta))/(theta cos(theta))
By the product rule,
lim_(theta->0) (tan(theta))/theta = (lim_(theta->0) (sin(theta))/theta) (lim_(theta->0) 1/(cos(theta))):
lim_(theta->0) 1/(cos(theta)) lim_(theta->0) (sin(theta))/theta
lim_(theta->0) sec(theta) = sec(0) = 1:
lim_(theta->0) (sin(theta))/theta
Applying l'Hôpital's rule, we get that
lim_(theta->0) (sin(theta))/theta | = | lim_(theta->0) ( d/( dtheta) sin(theta))/(( dtheta)/( dtheta))
| = | lim_(theta->0) (cos(theta))/1
| = | lim_(theta->0) cos(theta)
lim_(theta->0) cos(theta)
lim_(theta->0) cos(theta) = cos(0) = 1:
Answer: | = 1
lim tan(theta)/(theta) as theta → 0
lim sin(theta) / [cos(theta)* (theta)] as theta → 0
lim [ sine(theta)/theta)] * [1/cos(theta)] as theta → 0
[1] * [1/1] =
1
Here's the graph showing this : https://www.desmos.com/calculator/a6kkj0awy8