If Π/Π/2 = (Π/Π)/2 = 1/2
If Π/Π/2 = Π/(Π/2) = 2
I'm going to assume the second answer.
So, I'm going to make Π/Π/2Ψ = Π/(Π/2Ψ) = 2Ψ.
Problem: 2cos(2Ψ)cos²(Ψ) - 2sin(2Ψ)cos(Ψ)(sin(Ψ)
= 2[ cos(2Ψ)cos²(Ψ) - sin(2Ψ)cos(Ψ)(sin(Ψ) ]
Since sin(2X) = 2sin(X)cos(X):
= 2[ cos(2Ψ)cos²(Ψ) - sin(Ψ)cos(Ψ)cos(Ψ)(sin(Ψ) ]
= 2[ cos(2Ψ)cos²(Ψ) - sin²(Ψ)cos²(Ψ) ]
= 2cos²(Ψ)[ cos(2Ψ) - sin²(Ψ) ]
= 2cos²(Ψ)[ 1 - 2sin²(Ψ) - sin²(Ψ) ]
= 2cos²(Ψ)[ 1 - 3sin²(Ψ) ]
From here ... ?
If Π/Π/2 = (Π/Π)/2 = 1/2
If Π/Π/2 = Π/(Π/2) = 2
I'm going to assume the second answer.
So, I'm going to make Π/Π/2Ψ = Π/(Π/2Ψ) = 2Ψ.
Problem: 2cos(2Ψ)cos²(Ψ) - 2sin(2Ψ)cos(Ψ)(sin(Ψ)
= 2[ cos(2Ψ)cos²(Ψ) - sin(2Ψ)cos(Ψ)(sin(Ψ) ]
Since sin(2X) = 2sin(X)cos(X):
= 2[ cos(2Ψ)cos²(Ψ) - sin(Ψ)cos(Ψ)cos(Ψ)(sin(Ψ) ]
= 2[ cos(2Ψ)cos²(Ψ) - sin²(Ψ)cos²(Ψ) ]
= 2cos²(Ψ)[ cos(2Ψ) - sin²(Ψ) ]
= 2cos²(Ψ)[ 1 - 2sin²(Ψ) - sin²(Ψ) ]
= 2cos²(Ψ)[ 1 - 3sin²(Ψ) ]
From here ... ?