+0  
 
0
236
3
avatar

The number of real solutions of the equation  |x-3|-|x+1|/2*|x+1|=1 is ??

Guest Aug 22, 2015

Best Answer 

 #1
avatar+91024 
+10

$$\\|x-3|-|x+1|/2*|x+1|=1\\\\
|x-3|-\frac{|x+1|}{2}*|x+1|=1\\\\
|x-3|-\frac{|x+1|*|x+1|}{2}=1\\\\
|x-3|-\frac{(x+1)^2}{2}=1\\\\
|x-3|=1+\frac{(x+1)^2}{2}\\\\
|x-3|=\frac{x^2+2x+3}{2}\\\\
x-3=\frac{x^2+2x+3}{2}\qquad or \qquad x-3=-\frac{x^2+2x+3}{2} \\\\
2x-6=x^2+2x+3\qquad or \qquad 2x-6=-x^2-2x-3 \\\\
0=x^2+9\qquad or \qquad 0=-x^2-4x+3 \\\\
x^2=-9\qquad or \qquad x=\frac{4\pm\sqrt{16+12}}{-2} \\\\$$

 

$$\\x^2=-9\qquad or \qquad x=\frac{4\pm\sqrt{4*7}}{-2} \\\\
x^2=-9\qquad or \qquad x=\frac{4\pm2\sqrt{7}}{-2} \\\\
x^2=-9\qquad or \qquad x=\frac{2\pm\sqrt{7}}{-1} \\\\
x^2=-9\qquad or \qquad x=-2\pm \sqrt{7 }\\\\
x=\pm\sqrt{- 9}\quad or \quad x=-2+\sqrt{7 } \quad or \quad x=-2-\sqrt{7 }\\\\
$So it appears that the only real roots are $\\\\
x=-2+\sqrt{7 } \quad or \quad x=-2-\sqrt{7 }\\\\$$

Melody  Aug 23, 2015
Sort: 

3+0 Answers

 #1
avatar+91024 
+10
Best Answer

$$\\|x-3|-|x+1|/2*|x+1|=1\\\\
|x-3|-\frac{|x+1|}{2}*|x+1|=1\\\\
|x-3|-\frac{|x+1|*|x+1|}{2}=1\\\\
|x-3|-\frac{(x+1)^2}{2}=1\\\\
|x-3|=1+\frac{(x+1)^2}{2}\\\\
|x-3|=\frac{x^2+2x+3}{2}\\\\
x-3=\frac{x^2+2x+3}{2}\qquad or \qquad x-3=-\frac{x^2+2x+3}{2} \\\\
2x-6=x^2+2x+3\qquad or \qquad 2x-6=-x^2-2x-3 \\\\
0=x^2+9\qquad or \qquad 0=-x^2-4x+3 \\\\
x^2=-9\qquad or \qquad x=\frac{4\pm\sqrt{16+12}}{-2} \\\\$$

 

$$\\x^2=-9\qquad or \qquad x=\frac{4\pm\sqrt{4*7}}{-2} \\\\
x^2=-9\qquad or \qquad x=\frac{4\pm2\sqrt{7}}{-2} \\\\
x^2=-9\qquad or \qquad x=\frac{2\pm\sqrt{7}}{-1} \\\\
x^2=-9\qquad or \qquad x=-2\pm \sqrt{7 }\\\\
x=\pm\sqrt{- 9}\quad or \quad x=-2+\sqrt{7 } \quad or \quad x=-2-\sqrt{7 }\\\\
$So it appears that the only real roots are $\\\\
x=-2+\sqrt{7 } \quad or \quad x=-2-\sqrt{7 }\\\\$$

Melody  Aug 23, 2015
 #2
avatar+78620 
0

Very nice, Melody...!!!

 

 

CPhill  Aug 24, 2015
 #3
avatar+91024 
0

Thanks Chris :)))

Melody  Aug 25, 2015

29 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details