+0  
 
0
457
2
avatar

What is the Antiderivitive of xsin(7x)?

 Oct 15, 2014

Best Answer 

 #1
avatar+17747 
+5

Do you have integration by parts?

If so:  ∫u dv  =  u·v -∫v du

Let u = x  -->  du = dx

Let dv = sin(7x)dx  -->  v = -(1/7)cos(7x) 

Substituting:  ∫xsin(7x)dx  =  -(x/7)cos(7x) - ∫-(1/7)cos(7x)dx

                     ∫xsin(7x)dx  =  -(x/7)cos(7x) +(1/7) ∫cos(7x)dx

                     ∫xsin(7x)dx  =  -(x/7)cos(7x) + (1/49)sin(7x) + C

 Oct 15, 2014
 #1
avatar+17747 
+5
Best Answer

Do you have integration by parts?

If so:  ∫u dv  =  u·v -∫v du

Let u = x  -->  du = dx

Let dv = sin(7x)dx  -->  v = -(1/7)cos(7x) 

Substituting:  ∫xsin(7x)dx  =  -(x/7)cos(7x) - ∫-(1/7)cos(7x)dx

                     ∫xsin(7x)dx  =  -(x/7)cos(7x) +(1/7) ∫cos(7x)dx

                     ∫xsin(7x)dx  =  -(x/7)cos(7x) + (1/49)sin(7x) + C

geno3141 Oct 15, 2014
 #2
avatar+95177 
0

Thanks Gino  

 Oct 16, 2014

3 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.