Probably an easier way to do this....but.....
Let the bottom left vertex = (0,0) = A
Let the bottom right vertex = (8,0) = B
Let the top left vertex = (0,10) = E
Let the top right vertex ( 8,12) = C
Let the apex vertex = D
CE = sqrt ( 8^2 + 2^2) = sqrt ( 68) = 2sqrt (17)
Semi-perimeter of triangle CED = ( 4 + 6 + 2sqrt (17) ) / 2 = 5 + sqrt (17)
Area of triangle CED =
sqrt [ (5 + sqrt (17) ) ( 5 + sqrt (17) - 2sqrt (17)) (5 + sqrt (17) - 6) ( 5 + sqrt (17) - 4 ) ] =
sqrt [ (5 + sqrt (17) ) ( 5 -sqrt (17)) ( sqrt (17) - 1) ( sqrt (17) + 1) ] =
sqrt [ (5 + sqrt (17) ) (5-sqrt (17) ) (sqrt (17) -1) (sqrt (17 + 1) ] =
sqrt [ (25 -17) ( 17 - 1) ] =
sqrt [ 8 * 16 ] =
sqrt ( 64 * 2) = 8sqrt (2)
And ABCE is a trapezoid with bases of 10 and 12 and a height of 8
[ ABCE ] = (1/2) [ 8] [ 10 + 12 ]= 4 * 22 = 88
So...area of the pentagon = [ 88 + 8 sqrt (2) ] in^2 = 8 (11 + sqrt (2)) in^2