We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
195
1
avatar

What is the area of the composite figure whose vertices have the following coordinates? (-2, -2), (4, -2), (5, 1) , (2, 3)  

 Jan 31, 2019
 #1
avatar+7531 
+3

\(\text{Let }A(-2,-2),B(4,-2),C(5,1),D(2,3)\).

Connect BD.

It is obvious that \(\text{Area of }\triangle ABD = \dfrac{6\cdot 5}{2} = 15 \text{ unit}^2\).

Now add point E(5, 3), F(2, -2), G(5, -2) on the same coordinate system.

Consider rectangle DEFG.

\(\text{Area of }\triangle BCD = \text{Area of rectangle } DEFG - \text{Area of }\triangle DEC - \text{Area of }\triangle CBG - \text{Area of }\triangle DFB\)

\(\text{Area of }\triangle BCD = 3\cdot 5 - \dfrac{2\cdot 5 + 3\cdot 2+1\cdot 3}{2} = 15 - \dfrac{19}{2}=\dfrac{11}{2} \text{ unit}^2\).

Therefore the total area of the figure is 15 + 11/2 = 20.5 unit2.

 Feb 1, 2019

8 Online Users

avatar