+0  
 
0
2272
3
avatar

 

The line L is a tangent to the circle x+ y= 50 at the point A.

Line L crosses the x-axis at the point P.

Work out the area of triangle OAP. (O being the centre of the circle)

 Sep 13, 2017
 #1
avatar+71 
0

First, length of OA is \(\sqrt50\)as it's a radius of the circle. No need to simplify this,soon see why..

Now since line AP lies on the tangent line L ,then AP/OA   = tan 90 deg

So AP/OA = 1

AP/\(\sqrt50 = 1\)

So AP is also \(\sqrt50 \)

Area of triangle is 1/2 base  X height

          = 1/2   X \(\sqrt50*\sqrt50\)

          =  1/2  X 50

          =  25

 Sep 13, 2017
 #2
avatar+129899 
+2

 

Let's look at this a little closer......I don't know if "Point A"  is some specific point   or any random point on the circle.....but....if it's a random point.......look at this graph

 

 

Let  " Point  A "  be on the on the circle   =  ( a , sqrt (r^2 - a^2))

 

The slope of  the tangent line to this circle will be   =    -a / sqrt (r^2 - a^2)

 

So....the equation of a  line tangent to  the circle at  this point  is

 

y =  [ -a / sqrt (r^2 - a^2)] ( x - a) +  sqrt (r^2  - a^2)

 

To find "Point P"  let  y  = 0   we have that

 

0 =   [ -a / sqrt (r^2 - a^2)] ( x - a)  +  sqrt (r^2  - a^2)

 

 [ a / sqrt (r^2 - a^2)] ( x - a)   =   sqrt (r^2  - a^2)

 

a (x - a)   =   r^2 - a^2

 

ax - a^2  =  r^2  - a^2

 

ax =  r^2

 

x  = r^2 / a   ...   so  "Point P"   (  r^2/ a , 0 )

 

So.......  the   the base of triangle OAP will  be  r^2 / a      and the height will be sqrt ( r^2 - a^2)

 

So....the area of this triangle will be    (1/2) (r^2 / a) sqrt (r^2 - a^2)  =    (r^2) sqrt (r^2 - a^2) / [ 2a ]

 

So....suppose  r  = sqrt (50)  and  a  = 4

 

Then the area of triangle OAP  will  be    50 sqrt (34) / 8  ≈  36.44 sq units

 

But suppose that   r =sqrt (50) and  a  = 2

 

Then the area of triangle OAP  will be  50 sqrt ( 46) / 4  ≈ 84.78 sq units

 

 

 

cool cool cool

 Sep 13, 2017
edited by CPhill  Sep 13, 2017
edited by CPhill  Sep 14, 2017
 #3
avatar+129899 
+2

 

As an addendum to my answer.....I believe  that frasinscotland's  answer will be true if "Point A"  is (5,5)

 

Point P will be located at  ( 50/5, 0)  = (10,0)

 

So AP  will have a length of   sqrt   [ (10 - 5)^2  + ( 5 - 0)^2 ]  =  sqrt ( 25 + 25)  = sqrt (50)

 

And this will be  equal  to  OA

 

 

cool cool cool

 Sep 13, 2017

3 Online Users