-6*sec(sin(5x^2+3x+2)).....we will apply the -6 back at the end....using the chain rule several times we have
sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2) * (10x + 3)
And applying the -6 back, we have
(-60x - 18)*sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2)
-6*sec(sin(5x^2+3x+2)).....we will apply the -6 back at the end....using the chain rule several times we have
sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2) * (10x + 3)
And applying the -6 back, we have
(-60x - 18)*sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2)
Thanks CPhill, I just want to see if I can do it too. (๑‵●‿●‵๑)
Mmm that looks tricky.
let
y=−6∗sec(sin(5x2+3x+2))
let
g=sin(5x2+3x+2)dgdx=(10x+3)[cos(5x2+3x+2)]y=−6sec(g)y=−6(cos(g))−1dydg=6(cos(g))−2(−sin(g))dydg=−6sin(g)cos2(g)dydx=dydg×dgdxdydx=−6sin(g)cos2(g)×(10x+3)[cos(5x2+3x+2)]
\\\frac{dy}{dx}=\frac{-6sin(g)(10x+3)[cos(5x^2+3x+2)]}{cos^2(g)}\\\\ \frac{dy}{dx}=\frac{-6sin(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}{cos^2(sin(5x^2+3x+2))}\\\\ \frac{dy}{dx}=-6tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}\\\\ \frac{dy}{dx}=-(60x+18)tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))[cos(5x^2+3x+2)]}\\\\
WOW this is the same as CPhill's answer (๑‵●‿●‵๑)