Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1048
2
avatar

what is the derivative of -6*sec(sin(5x^2+3x+2))

 Mar 15, 2015

Best Answer 

 #1
avatar+130477 
+10

 -6*sec(sin(5x^2+3x+2)).....we will apply the -6 back at the end....using the chain rule several times we have

sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2) * (10x + 3)

And applying the -6 back, we have

(-60x - 18)*sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2)

 

  

 Mar 15, 2015
 #1
avatar+130477 
+10
Best Answer

 -6*sec(sin(5x^2+3x+2)).....we will apply the -6 back at the end....using the chain rule several times we have

sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2) * (10x + 3)

And applying the -6 back, we have

(-60x - 18)*sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2)

 

  

CPhill Mar 15, 2015
 #2
avatar+118703 
+5

Thanks CPhill, I just want to see if I can do it too.        (๑‵●‿●‵๑)

 

Mmm that looks tricky.

 

 

let

y=6sec(sin(5x2+3x+2))

let

g=sin(5x2+3x+2)dgdx=(10x+3)[cos(5x2+3x+2)]y=6sec(g)y=6(cos(g))1dydg=6(cos(g))2(sin(g))dydg=6sin(g)cos2(g)dydx=dydg×dgdxdydx=6sin(g)cos2(g)×(10x+3)[cos(5x2+3x+2)]

 

\\\frac{dy}{dx}=\frac{-6sin(g)(10x+3)[cos(5x^2+3x+2)]}{cos^2(g)}\\\\ \frac{dy}{dx}=\frac{-6sin(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}{cos^2(sin(5x^2+3x+2))}\\\\ \frac{dy}{dx}=-6tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}\\\\  \frac{dy}{dx}=-(60x+18)tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))[cos(5x^2+3x+2)]}\\\\

 

WOW this is the same as CPhill's answer     (๑‵●‿●‵๑)

 Mar 16, 2015

0 Online Users