+0  
 
0
3225
2
avatar

What is the first term of the geometric sequence presented in the table below?
 

n      3      6

an  12   −324



Hint: an = a1(r)n − 1, where a1 is the first term and r is the common ratio.  

 Feb 28, 2016
 #1
avatar+129845 
0

12    =  a1(r)2   →    a1  = 12/r2      (1)
-324 =  a1(r)5     (2)

 

Putting  (1)  into (2), we have

 

-324  = (12/r2)(r)5

 

-324/12 = r3

 

-27  = r3    

 

r = (-27)1/3 = -3

 

So

 

a1  = 12/(-3)=  12/9  =  4/3

 

 

 

 

cool cool cool

 Feb 29, 2016
 #2
avatar+26387 
+5

What is the first term of the geometric sequence presented in the table below?
 

n      3      6

an  12   −324

 

\(\small{ \boxed{~ \text{geometric sequence: } \quad a_k = a_i^{ \frac{j-k}{j-i} }\cdot a_j^{ \frac{k-i}{j-i} } ~} } \)

 

\(\begin{array}{rcll} a_3 &=& a_i = 12 \qquad & i = 3\\ a_6 &=& a_j =-324 \qquad & j = 6\\ a_1 &=& a_k = \ ? \qquad & k = 1 \end{array}\)

 

\(\begin{array}{rcll} a_1 &=& 12 ^{ \left( \frac{6-1}{6-3} \right)} \cdot (-324)^{ \left( \frac{1-3}{6-3} \right) } \\ a_1 &=& 12 ^{\left( \frac{5}{3} \right) } \cdot (-324)^{ \left( \frac{-2}{3} \right) } \\ a_1 &=& \frac{ 12 ^{\left( \frac{5}{3} \right) } } { (-324)^{ \left( \frac{2}{3} \right) } }\\ a_1 &=& \sqrt[3]{ \frac{ 12^5 } { (-324)^{2} } } \\ a_1 &=& \sqrt[3]{ \frac{ 248832 } { 104976 } } \\ a_1 &=& \sqrt[3]{ 2.37037037037 } \\ a_1 &=& 1.33333333333 \\ a_1 &=& \frac43 \\ \end{array}\)

 

laugh

 Feb 29, 2016

1 Online Users

avatar