+0  
 
+3
618
1
avatar+24 

what is the home loan repayment if the principal is 433648.02, paid monthly for 23 years with an interest rate of 7%

 Aug 6, 2014

Best Answer 

 #1
avatar+4473 
+3

P = 433648.02

i = 7% = 0.07

Loan Length = 23 years

i/12 = 0.07/12 = 0.0058333333333333 or simply 0.00583

Since the repayment lasts 23 years --> n = 23*12 = 276 months

(1 + i)^n --> (1 + 0.0058333333333333)^276 = 4.9794644680471764824683524105611725203744679140767379 or simply 4.9795

Home loan repayment [HLR] = P[(i/12*(1+i)^n) / ((1+i)^n - 1)]

                                             = 433648.02[(0.00583*4.9795) / (4.9795 - 1)]

HLR = 433648.02[0.029030485 / 3.9795]

HLR = 433648.02[0.0072950081668551]

HLR = 3163.465847440543741902

HLR = 3163.47 = $3,163.47/month.

 Aug 6, 2014
 #1
avatar+4473 
+3
Best Answer

P = 433648.02

i = 7% = 0.07

Loan Length = 23 years

i/12 = 0.07/12 = 0.0058333333333333 or simply 0.00583

Since the repayment lasts 23 years --> n = 23*12 = 276 months

(1 + i)^n --> (1 + 0.0058333333333333)^276 = 4.9794644680471764824683524105611725203744679140767379 or simply 4.9795

Home loan repayment [HLR] = P[(i/12*(1+i)^n) / ((1+i)^n - 1)]

                                             = 433648.02[(0.00583*4.9795) / (4.9795 - 1)]

HLR = 433648.02[0.029030485 / 3.9795]

HLR = 433648.02[0.0072950081668551]

HLR = 3163.465847440543741902

HLR = 3163.47 = $3,163.47/month.

AzizHusain Aug 6, 2014

0 Online Users