what is the home loan repayment if the principal is 433648.02, paid monthly for 23 years with an interest rate of 7%
P = 433648.02
i = 7% = 0.07
Loan Length = 23 years
i/12 = 0.07/12 = 0.0058333333333333 or simply 0.00583
Since the repayment lasts 23 years --> n = 23*12 = 276 months
(1 + i)^n --> (1 + 0.0058333333333333)^276 = 4.9794644680471764824683524105611725203744679140767379 or simply 4.9795
Home loan repayment [HLR] = P[(i/12*(1+i)^n) / ((1+i)^n - 1)]
= 433648.02[(0.00583*4.9795) / (4.9795 - 1)]
HLR = 433648.02[0.029030485 / 3.9795]
HLR = 433648.02[0.0072950081668551]
HLR = 3163.465847440543741902
HLR = 3163.47 = $3,163.47/month.
P = 433648.02
i = 7% = 0.07
Loan Length = 23 years
i/12 = 0.07/12 = 0.0058333333333333 or simply 0.00583
Since the repayment lasts 23 years --> n = 23*12 = 276 months
(1 + i)^n --> (1 + 0.0058333333333333)^276 = 4.9794644680471764824683524105611725203744679140767379 or simply 4.9795
Home loan repayment [HLR] = P[(i/12*(1+i)^n) / ((1+i)^n - 1)]
= 433648.02[(0.00583*4.9795) / (4.9795 - 1)]
HLR = 433648.02[0.029030485 / 3.9795]
HLR = 433648.02[0.0072950081668551]
HLR = 3163.465847440543741902
HLR = 3163.47 = $3,163.47/month.