#2**+10 **

**What is the LCM of 8847 and 2532 ?**

**$$\small{\text{The following formula reduces the problem of computing the least common multiple}}\\ \small{\text{to the problem of computing the greatest common divisor (GCD), }}\\ \small{\text{also known as the greatest common factor:}}\\\\ \small{\text{ $ \boxed{lcm$(a,b)=\dfrac{|a\cdot b|}{\text{gcd}(a,b)} } $ . }}$$**

**There is the Euclidean algorithm for computing the GCD.**

**$$\small{\text{gcd$(8847,2532)$}} \\ \small{\text{$ \begin{array}{rrrr} & & q & r\\ 8847 & 2532 & 3 & 1251 \\ 2532 & 1251 & 2 & 30\\ 1251 & 30 & 41 & 21\\ 30 & 21 & 1 & 9 \\ 21 & 9 & 2 & \textcolor[rgb]{1,0,0}{3} \\ 9 & 3 & 3 & $ algorithm Ends $ 0 \end{array} $}}\\\\ \small{\text{gcd$(8847,2532)$}} = 3 \\$$**

**$$\small{\text{lcm$(8847,2532)=\dfrac{|8847\cdot 2532|}{3} = 7466868 $}}$$**

heureka
Feb 18, 2015

#2**+10 **

Best Answer

**What is the LCM of 8847 and 2532 ?**

**$$\small{\text{The following formula reduces the problem of computing the least common multiple}}\\ \small{\text{to the problem of computing the greatest common divisor (GCD), }}\\ \small{\text{also known as the greatest common factor:}}\\\\ \small{\text{ $ \boxed{lcm$(a,b)=\dfrac{|a\cdot b|}{\text{gcd}(a,b)} } $ . }}$$**

**There is the Euclidean algorithm for computing the GCD.**

**$$\small{\text{gcd$(8847,2532)$}} \\ \small{\text{$ \begin{array}{rrrr} & & q & r\\ 8847 & 2532 & 3 & 1251 \\ 2532 & 1251 & 2 & 30\\ 1251 & 30 & 41 & 21\\ 30 & 21 & 1 & 9 \\ 21 & 9 & 2 & \textcolor[rgb]{1,0,0}{3} \\ 9 & 3 & 3 & $ algorithm Ends $ 0 \end{array} $}}\\\\ \small{\text{gcd$(8847,2532)$}} = 3 \\$$**

**$$\small{\text{lcm$(8847,2532)=\dfrac{|8847\cdot 2532|}{3} = 7466868 $}}$$**

heureka
Feb 18, 2015