Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
646
1
avatar

What is the minimum f(x)value for the following quadratic function? f(x)=2x^2+36x+170

 Dec 15, 2014

Best Answer 

 #1
avatar+23254 
+5

A formula to find the x-value of the vertex of a quadratic function is:  x = -b/(2a)

In  f(x)  =  2x² + 36x + 170     --->     a = 2,  b = 36,  and  c = 170

x  =  -b/(2a)   --->   x  =  -36/(2·2)  =  -36/4  =  -9

f(-9)  =  2(-9)² + 36(-9) + 170  =  8

Since the value of a > 0, this is a rising parabola, so the point (-9, 8) is a minimum.

The minimum f-value is 8.

 Dec 15, 2014
 #1
avatar+23254 
+5
Best Answer

A formula to find the x-value of the vertex of a quadratic function is:  x = -b/(2a)

In  f(x)  =  2x² + 36x + 170     --->     a = 2,  b = 36,  and  c = 170

x  =  -b/(2a)   --->   x  =  -36/(2·2)  =  -36/4  =  -9

f(-9)  =  2(-9)² + 36(-9) + 170  =  8

Since the value of a > 0, this is a rising parabola, so the point (-9, 8) is a minimum.

The minimum f-value is 8.

geno3141 Dec 15, 2014

1 Online Users