We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
158
1
avatar+22 

What is the minimum value of the expression 2x^2+3y^2+8x-24y+62 for real x and y?

 Feb 26, 2019
 #1
avatar+23041 
+4

What is the minimum value of the expression

 \(\mathbf{\huge{2x^2+3y^2+8x-24y+62}}\) 

for real x and y?

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x,y)} & \mathbf{=} & \mathbf{2x^2+3y^2+8x-24y+62} \\\\ f_x=\dfrac{\partial f} {\partial x} &=& 4x+8 \\ f_y=\dfrac{\partial f} {\partial y} &=& 6y-24 \\ f_{xx}= \dfrac{\partial^2 f} {\partial x^2} &=& 4 \\ f_{yy}= \dfrac{\partial^2 f} {\partial y^2} &=& 6 \\ f_{xy}=f_{yx}= \dfrac{\partial^2 f} {\partial x\partial y}= \dfrac{\partial^2 f} {\partial y\partial x} &=& 0 \\ \hline \end{array} \)

 

if \(f_{xx}f_{yy}-f^2_{xy}>0\)  either a maximum or a minimum.


Distinguish between these as follows:

if \(f_{xx}<0\) and \(f_{yy} <0\)  then is a maximum point.

if \(f_{xx}>0\) and \(f_{yy} >0\)  then is a minimum point.

 

\(\begin{array}{|rcll|} \hline && f_{xx}f_{yy}-f^2_{xy} \\ &=& 4\cdot 6 - 0^2 \\ &=& 24 \quad | \quad >0 \quad \text{either a maximum or a minimum} \\\\ && f_{xx} \\ &=& 4 \\ && f_{yy} \\ &=& 6 \quad | \quad f_{xx}>0 \text{ and } f_{yy} >0 \quad \text{it is a minimum point}\\ \hline \end{array} \)

 

The minimum value:

\(\begin{array}{|rcll|} \hline f_x(x,y) = 4x+8 &=& 0 \\ 4x+8 &=& 0 \\ 4x &=& -8 \\ x &=& -\dfrac{8}{4} \\ \mathbf{x_{\text{minimum}}} &\mathbf{=}& \mathbf{ -2 } \\\\ f_y(x,y) = 6y-24 &=& 0 \\ 6y-24 &=& 0 \\ 6y &=& 24 \\ y &=& \dfrac{24}{6} \\ \mathbf{y_{\text{minimum}}} &\mathbf{=}& \mathbf{ 4 } \\ \hline \end{array} \)

 

laugh

 Feb 26, 2019

23 Online Users

avatar