+0  
 
0
485
2
avatar

what is the ones digit of 9^40?

Guest Feb 23, 2015

Best Answer 

 #2
avatar+20146 
+10

what is the ones digit of 9^40 ?

$$9^{40}\mod 10\\
=( \underbrace{9^2}_{=1\mod 10} )^{20}\mod 10 \qquad | \qquad 9^2\mod 10 =\ 81 \mod 10 =\ 1 \\\\
=1^{20}\mod 10 \qquad\qquad | \quad 1^{20} = 1 \\
=1\mod 10$$

heureka  Feb 24, 2015
 #1
avatar+91027 
+10

Note the cycle

9^1 = 9

9^2 = 81

9^3 = 729

9^4 =  6561     and this pattern repeats for every "block" of 4 powers

Note that 40 is evenly divisible by 4, so 9^40 has a "ones" digit that completes this cycle. So....9^40  ends in a "1"

 

CPhill  Feb 23, 2015
 #2
avatar+20146 
+10
Best Answer

what is the ones digit of 9^40 ?

$$9^{40}\mod 10\\
=( \underbrace{9^2}_{=1\mod 10} )^{20}\mod 10 \qquad | \qquad 9^2\mod 10 =\ 81 \mod 10 =\ 1 \\\\
=1^{20}\mod 10 \qquad\qquad | \quad 1^{20} = 1 \\
=1\mod 10$$

heureka  Feb 24, 2015

4 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.